www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Uni-Finanzmathematik" - Finanzierung, Annuität
Finanzierung, Annuität < Finanzmathematik < Finanz+Versicherung < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Finanzmathematik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Finanzierung, Annuität: Annuität
Status: (Frage) beantwortet Status 
Datum: 15:16 So 10.12.2017
Autor: Asura

Aufgabe
Finanzierende Gesamtkosten R0 = 215700 €
R0,1 = 182 000 €; nominaler Jahreszins 2,41 %
R0,2 = 33 700 €; nominaler Jahreszins 7,71 %
Zinsbindung beträgt 10 Jahre.

Wie müsste die monatliche Annuität für den ersten Finanzierungsbaustein gewählt werden, damit die anfängliche Tilgung exakt 1/12 * 1% beträgt?

Ferner ist von einer anfänglichen Tilgung von mind. 1 % die Rede.

Guten Tag,
ich komme hier leider nicht so weiter.
Also ich kann den Aufzinsungfaktor festlegen mit q1 = 1 + 0,0241/12, sinngemäß beim Zweiten Finanzierungsbaustein ebenfalls.

Leider muss ich sagen, dass die anfängliche Tilgung mich stark verwirrt. Sodass ich nicht mehr weiß, welche Formel ich hier anwenden müsste.

Ich hoffe Sie können mir hier weiterhelfen.  

        
Bezug
Finanzierung, Annuität: Antwort
Status: (Antwort) fertig Status 
Datum: 16:09 So 10.12.2017
Autor: Staffan

Hallo,

die Annuität setzt sich aus einem Zins- und einem Tilgungsanteil zusammen, die auf das Ausgangskapital [mm] R_0 [/mm] bezogen werden. Man kann hier auf zwei Wegen vorgehen. (1) Berechnet wird getrennt von EUR 182000 der Zinsanteil durch Multiplikation mit $ 0,0241/12 $ und der Tilgungsteil durch Multiplikation mit $0,01/12$ und addiert beide Ergebnisse -  oder (2) man addiert zuerst den Zins- und Tilgungsanteil (auf das Jahr bezogen), also $0,0241+0,01$, teilt das durch 12 und multipliziert mit den EUR 182000.

Gruß
Staffan

Bezug
                
Bezug
Finanzierung, Annuität: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 16:33 So 10.12.2017
Autor: Asura

Also wäre das wie folgt richtig?

A = 182000 € + [mm] (1+\bruch{0,0241}{12}) [/mm] + 182000 € * [mm] \bruch{0,01}{12} [/mm]

Also erster Teil ist Z1,1 also Zinsanteil
und der zweite Tiel ist T1,1 mit Tilgungsanteil.
Addition ergibt Annuität.

Bezug
                        
Bezug
Finanzierung, Annuität: Antwort
Status: (Antwort) fertig Status 
Datum: 18:43 So 10.12.2017
Autor: Staffan

Hallo,

fast. Der zweite Teil stimmt. Bei dem ersten braucht man nur den Zinsanteil, also

$ [mm] Z_1= [/mm] 182000 [mm] \cdot \bruch{0,0241}{12} [/mm] $.

Wird mit $ [mm] q=1+\bruch{0,0241}{12} [/mm] $ multipliziert, erhält man das Kapital plus dem Zinsanteil (und müßte für die Zinsen allein das Kapital wieder abziehen).

Gruß
Staffan

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Finanzmathematik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de