www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Gewöhnliche Differentialgleichungen" - Finde Differentialgleichung
Finde Differentialgleichung < gewöhnliche < Differentialgl. < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Gewöhnliche Differentialgleichungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Finde Differentialgleichung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 15:29 Do 03.08.2006
Autor: Faronel

Aufgabe
Man finde eine homogene lineare Differentialgleichung mit konstanten Koeffizienten von kleinster Ordnung, welche die folgenden Funktionen als Lösung besitzt:

x [mm] \to [/mm] -xsin(2x)
x [mm] \to e^{-x} [/mm]

Wie heisst deren allgemeine Lösung?

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

Hallo!

Das ist eine Aufgabe aus einer Vordiplomprüfung. Ich habe die Lösung vorliegen, erkenne aber nicht richtig, wie man auf die Lösung kommt.

Lösung:
-----
Aus den Lösungen liest man sofort ab, dass 2i und damit auch -2i (mindestens) eine doppelte und -1 (mindestens) eine einfach Nullstelle des charakteristischen Polynoms sein muss. Das Polynom von kleinster Ordnung muss also lauten:

[mm] (\lambda [/mm] - [mm] 2i)^{2}(\lambda [/mm] + [mm] 2i)^{2}(\lambda [/mm] + 1) = [mm] (\lambda^{2} [/mm] + [mm] 4)^{2}(\lambda [/mm] + 1) = [mm] \lambda^{5} [/mm] + [mm] \lambda^{4} [/mm] + [mm] 8\lambda^{3} [/mm] + [mm] 8\lambda^{2} [/mm] + [mm] 16\lambda [/mm] + 16

Die gesuchte Differentialgleichung ist damit gegeben durch

[mm] y^{(5)} [/mm] + [mm] y^{(4)} [/mm] + [mm] 8y^{(3)} [/mm] + [mm] 8y^{(2)} [/mm] + [mm] 16y^{(1)} [/mm] + 16y = 0

Die allgemeine Lösung lautet:

y(x) = [mm] c_{1}sin(2x) [/mm] + [mm] c_{2}cos(2x) [/mm] + [mm] c_{3}xsin(2x) [/mm] + [mm] c_{4}xcos(2x) [/mm] + [mm] c_{5}e^{-x} [/mm]
-----

Also, wie "liest man sofort ab", dass 2i, -2i und -1 Lösungen sind?

Weiter sehe ich nicht, wie er von der "gesuchten Differentialgleichung" auf die "allgemeine Lösung" kommt.

Vielen Dank für eure Hilfe!

        
Bezug
Finde Differentialgleichung: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 17:09 Do 03.08.2006
Autor: tausi

Hallo!

Bist du dir sicher, dass xsin(2x) Lösung sein soll, denn bei deiner Lösung wäre ja nur sin(2x) eine Lösung. Kannst du das bitte kontrollieren!

Tausi

Bezug
                
Bezug
Finde Differentialgleichung: Aufgabenstellung korrekt
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 12:12 Fr 04.08.2006
Autor: Faronel

Die Aufgabenstellung, wie auch die Lösung wurde Korrekt abgetippt.

Bezug
        
Bezug
Finde Differentialgleichung: Lösung
Status: (Antwort) fertig Status 
Datum: 10:20 Mi 09.08.2006
Autor: EvenSteven

Hallo
Die Nullstelle 2i (doppelt) siehst du an der Lösung x*sin(2*x) denn nach Euler ist e^(2*i*x)=cos(2*x) + i * sin(2*x) und der Faktor x  in der Lösung sagt dir, dass 2*i eine doppelte Nullstelle ist (da man offenbar eine weitere linear unabhänige Lösung brauchte neben sin(x)).

Gruss

EvenSteven

PS Sorry, ich habe mich mit dem Matheskript hier noch nicht so auseinandergesetzt.

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Gewöhnliche Differentialgleichungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de