www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Nichtlineare Gleichungen" - Finite Differenzen Bratu
Finite Differenzen Bratu < Nichtlineare Gleich. < Numerik < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Nichtlineare Gleichungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Finite Differenzen Bratu: Frage (überfällig)
Status: (Frage) überfällig Status 
Datum: 13:06 Fr 21.05.2010
Autor: scippo_96

Ich habe bislang noch keine Vorstellung, wie man den nichtlinearen Teil des Bratu Problems durch Finite Differenzen diskretisieren kann.

Das Bratu Problem ist ein aus der Chemie bekanntes Problem, in dem es um die Verbrennung von Stäben geht und beschrieben werden kann durch eine Differentialgleichung folgenden Typs:

Au =  [mm] \lambda [/mm] exp(u) mit  = 0 (Randbedingung)
Hier soll [mm] \lambda [/mm] = 1 sein. Für [mm] \Lambda [/mm] = 0 erhalten wir die Poisson Gleichung als Spezialfall.

Den linken Teil kann man per Finite Differenzen approximieren, d.h. man versucht die zweiten partiellen Ableitungen durch Differenzenquotienten auszudrücken. Man erhält dann schließlich eine Blocktridiagonalmatrix, wo gezeigt werden kann, dass diese symmetrisch, positiv definit ist.

Der nichtlineare Teil des Bratu Problems also exp(u) soll auch per Differenzenmethode approximiert werden.
Meine Idee ist, den im linken Schritt erhaltenen Fünf-Punkt-Operator (Differenzenstern) mit zentralem Eintrag 4 und benachbarten Einträgen -1 auch für den rechte Seite zu benutzen:

Es gilt dann:
[mm] e^{u_{i,j}} \approx e^{(1/4)*(u_{i+1,j}+u_{i-1,j}+u_{j+1,j} + u_{j-1,j})} [/mm]

Dann erhält man doch eine Matrix der Gestalt:

[mm] e^{u_{i,j}} \approx \pmat{ e^(u_{1,1}) & e^(u_{1,2}) &...&e^(u_{1,n-1})\\ e^(u_{2,1}) & e^(u_{2,2}) &...&e^(u_{2,n-1})\\ etc. & etc. & etc. & etc. } [/mm]

Ist die Idee richtig ?

Und das erhaltene nichtlineare Gleichungssystem kann man dann mit Newtonverfahren lösen.
Aber wie sieht dann die Funktion F denn genau aus ?

Ich habe diese Frage auch in folgenden Foren auf anderen Internetseiten gestellt:
http://www.matheplanet.com/



        
Bezug
Finite Differenzen Bratu: Fälligkeit abgelaufen
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 13:20 So 23.05.2010
Autor: matux

$MATUXTEXT(ueberfaellige_frage)
Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Nichtlineare Gleichungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de