www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Uni-Analysis" - Fixpunkt
Fixpunkt < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Fixpunkt: Idee
Status: (Frage) beantwortet Status 
Datum: 16:00 Do 13.04.2006
Autor: babel

Aufgabe
Definiere T: C([0,1]) -> C[0,1], wobei

Tf(x) = 1/2  [mm] \integral_{0}^{1}{sin(x+t) f(t) dt}. [/mm]

Zeige, dass T kontrahierend ist.

Hallo zusammen,
weiss jemand, wie ich diese Aufgabe angehen kann? Ich weiss, dass eine kontrahierende Abbildung eines vollständigen metrischen Raumes in sich genau einen Fixpunkt besitzt. Wie kann ich nun mit diesem Wissen, diese Aufgabe lösen?



Ich habe diese Aufgabe in keinem anderen Forum gestellt

        
Bezug
Fixpunkt: Antwort
Status: (Antwort) fertig Status 
Datum: 16:25 Do 13.04.2006
Autor: MatthiasKr

Hallo babel,

wenn ihr nicht auch zeigen müsst, dass $T(f)$ tatsächlich eine stetige funktion ist, dann ist die aufgabe relativ leicht. Du musst zeigen, dass es eine kontraktionskonstante $c<1$ gibt, so dass

[mm] |T(f_1)-T(f_2)|<=c|f_1-f_2| [/mm]

für alle [mm] $f_1,f_2\in [/mm] C([0,1])$ gilt. Schreibe Dir den linken Term einfach mal hin und überlege, wie man das integral evtl. abschätzen könnte. Dann bist du eigentlich schon fast fertig!

VG
Matthias

Bezug
                
Bezug
Fixpunkt: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 09:22 Fr 14.04.2006
Autor: babel

danke für den Hinweis, hilft mir weiter

Bezug
                
Bezug
Fixpunkt: Frage (überfällig)
Status: (Frage) überfällig Status 
Datum: 14:42 So 16.04.2006
Autor: babel

Es geht irgendwie doch nicht. Wie kann ich dieses Integral ausrechnen? Wie muss ich das abschätzen. Kann mir jemand helfen?

Bezug
                        
Bezug
Fixpunkt: Antwort
Status: (Antwort) fertig Status 
Datum: 16:32 So 16.04.2006
Autor: leduart

Hallo babel
Hast du mal T(f(x1)-f(x2)) hingeschrieben? sin/x1-t) Additionstheorem anwenden sinx1 -sinx2  und entspr cos vor das Integral: Integral< max des Integranden*Länge des Intervalls und Dreiecksungl sollten zum Ziel führen.
Gruss leduart

Bezug
                        
Bezug
Fixpunkt: Fälligkeit abgelaufen
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 15:20 Di 18.04.2006
Autor: matux

$MATUXTEXT(ueberfaellige_frage)
Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de