www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Uni-Numerik" - Fixpunkt der Abbildung Lsg
Fixpunkt der Abbildung Lsg < Numerik < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Numerik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Fixpunkt der Abbildung Lsg: mit A = D - (L + U)
Status: (Frage) beantwortet Status 
Datum: 21:51 Di 06.02.2007
Autor: Bianca_1984

Aufgabe
Zu lösen ist das lineare Gleichungssystem Ax = b
mit der (n [mm] \times [/mm] n)-Matrix A und der rechten Seite [mm] b\in\IR^{n}. [/mm]  A sei mit der Diagonalmatrix D, der unteren Dreiecksmatrix L und der oberen Dreiecksmatrix U als Summe A = D - (L + U) dargestellt.
Zeigen Sie, dass ein Fixpunkt der Abbildung
ψ(x) = (D - ω [mm] L)^{-1} [/mm] [(1 - ω)D +ω U]x + ω (D - ω [mm] L)^{-1}b, [/mm] ω [mm] \in [/mm] (0, 1]
Lösung des linearen Gleichungssystems Ax = b ist,
wobei (D - ω L) als nichtsingulär vorausgesetzt wird.

Meine letzte Numerik Aufgabe, vor meiner Klausur! *freu*

Weiss nicht so genau wie ich dieses Aufgabe lösen kann muss ich die Gleichung erst mal so umstellen: (D - (L + U))x=b?
Aber wie soll ich den Fixpunkt darin einbauen? oder ist der Ansatz schon falsch?
Würde mich freuen wenn mir einer helfen könnte und bedanke mich schon mal!


        
Bezug
Fixpunkt der Abbildung Lsg: Antwort
Status: (Antwort) fertig Status 
Datum: 09:55 Mi 07.02.2007
Autor: statler

Guten Morgen Bianca!

> Zu lösen ist das lineare Gleichungssystem Ax = b
>  mit der (n [mm]\times[/mm] n)-Matrix A und der rechten Seite
> [mm]b\in\IR^{n}.[/mm]  A sei mit der Diagonalmatrix D, der unteren
> Dreiecksmatrix L und der oberen Dreiecksmatrix U als Summe
> A = D - (L + U) dargestellt.
> Zeigen Sie, dass ein Fixpunkt der Abbildung
>  ψ(x) = (D - ω [mm]L)^{-1}[/mm] [(1 - ω)D +ω U]x
> + ω (D - ω [mm]L)^{-1}b,[/mm] ω [mm]\in[/mm] (0, 1]
>  Lösung des linearen Gleichungssystems Ax = b ist,
> wobei (D - ω L) als nichtsingulär vorausgesetzt wird.
>  Meine letzte Numerik Aufgabe, vor meiner Klausur! *freu*

Schön, sehr schön! Auch *freu*

> Weiss nicht so genau wie ich dieses Aufgabe lösen kann muss
> ich die Gleichung erst mal so umstellen: (D - (L + U))x=b?
>  Aber wie soll ich den Fixpunkt darin einbauen? oder ist
> der Ansatz schon falsch?

Das ist ganz einfach: Schreib mal die Gleichung [mm] \psi(x) [/mm] = x mit den Matrizen hin. Dann formst du unter Verwendung der Rechenregeln solange um, bis daraus Ax = b geworden ist. Gezeigt hast du dann: Wenn (für ein x) [mm] \psi(x) [/mm] = x, dann (für dieses x auch) Ax = b.

Gruß aus HH-Harburg
Dieter


Bezug
                
Bezug
Fixpunkt der Abbildung Lsg: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 20:25 Do 08.02.2007
Autor: Bianca_1984

aber wie soll ich dann mit ω arbeiten, also wie löse ich das denn auf?

würde dann bei mir so stehen:
(D - ω [mm] L)^{-1} [/mm] (D x - ω D x + ω U) + ω (D - ω [mm] L)^{-1} [/mm] b
Wie soll ich nun weiter machen? dieses ω stört mich irgendwie!

Danke schon mal für die hilfe!

Bezug
                        
Bezug
Fixpunkt der Abbildung Lsg: Antwort
Status: (Antwort) fertig Status 
Datum: 09:04 Fr 09.02.2007
Autor: statler

Guten Morgen Bianca!

> aber wie soll ich dann mit ω arbeiten, also wie löse
> ich das denn auf?
>  
> würde dann bei mir so stehen:
> (D - ω [mm]L)^{-1}[/mm] (D x - ω D x + ω U) + ω
> (D - ω [mm]L)^{-1}[/mm] b
>  Wie soll ich nun weiter machen? dieses ω stört mich
> irgendwie!

Dann schaun wer mal:
Sei also x ein Fixpunkt, d. h.
[mm] \psi(x) [/mm] = (D - [mm] \omega L)^{-1} [/mm] [(1 - [mm] \omega)D [/mm] + [mm] \omega [/mm] U]x + [mm] \omega [/mm] (D - [mm] \omega L)^{-1}b] [/mm] = x
Das multipliziere ich von links mit (D - [mm] \omega [/mm] L), wobei ich benutze, daß die Matrizenmultiplikation mit der Skalarmultiplikation kommutiert, gibt:
[(1 - [mm] \omega)D [/mm] + [mm] \omega [/mm] U]x + [mm] \omega [/mm] b = (D - [mm] \omega [/mm] L)x
oder (Distributivgesetz)
Dx - [mm] \omega [/mm] Dx + [mm] \omega [/mm] Ux + [mm] \omega [/mm] b = Dx - [mm] \omega [/mm] Lx
und weiter
[mm] \omega [/mm] b = [mm] (\omega [/mm] D - [mm] \omega [/mm] L - [mm] \omega [/mm] U)x
Jetzt noch durch [mm] \omega [/mm] teilen und die Definition A = D-L-U benutzen, dann steht da
b = Ax

Gruß aus dem verschneiten HH-Harburg
Dieter


Bezug
                                
Bezug
Fixpunkt der Abbildung Lsg: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 21:51 Do 15.02.2007
Autor: Bianca_1984

Wollte mich nur noch mal bei dir bedanken hat mir sehr geholfen.

Güsse aus dem schönen Berlin!!!! ;)


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Numerik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de