www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Nichtlineare Gleichungen" - Fixpunktaufgabe
Fixpunktaufgabe < Nichtlineare Gleich. < Numerik < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Nichtlineare Gleichungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Fixpunktaufgabe: Tipp/Idee/Hilfe
Status: (Frage) beantwortet Status 
Datum: 23:32 Mo 27.06.2011
Autor: MaRaQ

Aufgabe
Sei [mm]I:= [-1,1] x [-1,1][/mm] und die Funktion [mm]f: I \to \IR^2[/mm] gegeben durch
[mm]f(x) = f(\vektor{x_1 \\ x_2 }) = \bruch{1}{8}\vektor{ln(1 + x_1^2 + x_2^2) -1 \\ x_1^2 + x_2^2}[/mm]

a) Zeigen Sie, dass f in I genau einen Fixpunkt besitzt
b) Führen Sie mit [mm]x^{(0)}=\vektor{0\\0}[/mm] zwei Schritte der Fixpunktiteration durch und geben Sie eine a-posteriori-Fehlerabschätzung für [mm] x^{(2)} [/mm] an.

So weit so gut. Für a) habe ich keinerlei Ansatz, wie man das zeigen könnte, so etwas habe ich noch nie gemacht und im Skript findet sich kein einziges auch nur annährend hilfreiches Beispiel. Wie kann/sollte man hier ansetzen?

Deshalb habe ich mich bislang (überwiegend erfolglos) an Teilaufgabe b versucht.
Für diese Aufgabentypen wurde in der Vorlesung das mehrdimensionale Newton-Verfahren vorgestellt, samt Algorithmus.
Das Problem - egal wie ich es drehe und wende: Die Funktional-Matrix dieser Funktion ist schlichtweg nicht invertierbar, damit ist der Algorithmus nicht durchführbar.

Was mache ich also falsch?

Wenn ich die entsprechende Jakobi/Funktionalmatrix aufstelle, erhalte ich:

[mm]J(x) = \bruch{1}{8}\pmat{ \bruch{\partial f_1(x)}{\partial x_1} & \bruch{\partial f_1(x)}{\partial x_2} \\ \bruch{\partial f_2(x)}{\partial x_1} & \bruch{\partial f_2(x)}{\partial x_2} } = \bruch{1}{8} \pmat{ \bruch{2x_1}{x_1^2 + x_2^2 + 1} & \bruch{2x_2}{x_1^2 + x_2^2 + 1} \\ 2x_1 & 2x_2 }[/mm]

Und dieses Funktional hat nicht annähernd vollen Rang, ist also erst recht nicht invertierbar.
Damit ist das Lösen von [mm]\Delta x^{(n)} = -J(x^{(n)})f(x^{(n)})[/mm] nicht möglich und der Algorithmus nicht durchführbar...

Wer kann und mag mir da mal auf die Sprünge helfen?

        
Bezug
Fixpunktaufgabe: Antwort
Status: (Antwort) fertig Status 
Datum: 08:30 Di 28.06.2011
Autor: fred97

Tipp: Fixpunktsatz von Banach

FRED

Bezug
                
Bezug
Fixpunktaufgabe: Frage (überfällig)
Status: (Frage) überfällig Status 
Datum: 16:59 Di 28.06.2011
Autor: MaRaQ

Hallo Fred,

sehr guter Tipp, danke! Kaum zu glauben: Der Fixpunktsatz wird im gesamten Skript nicht ein mal erklärt, nur an einigen wenigen Stellen vorausgesetzt. Aber gut... da er mir woanders schon mal untergekommen war, hat das vielleicht sogar seine Richtigkeit.

Weiter mit der Aufgabe:

Der Banach'sche Fixpunktsatz ist ja recht überschaubar: Es reicht, zu zeigen, dass

[mm]||f(x) - f(y)|| \le c||x - y||[/mm]

gilt. Und da kann man sich die Norm, bezüglich man der das zeigt, sogar noch frei aussuchen.
Naheliegender Ansatz: Euklidische Norm.

[mm]||f(\vektor{x_1\\x_2}) - f(\vektor{y_1\\y_2})|| = ||\bruch{1}{8}\vektor{ln(1 + x_1^2 + x_2^2) - ln(1 + y_1^2 + y_2^2)\\x_1^2 + x_2^2 - y_1^2 - y_2^2}||[/mm]

Und hier wirds schon recht tricky. Ein Logarithmusgesetz, das mir da spontan einfiele, wäre ln(a) + ln(b) = ln(a*b).
Aber wie auch immer ich das Ganze umforme, es bleibt unschön - und dass das kleiner oder gleich [mm]c*\wurzel{(x_1 - y_1)^2 + (x_2 - y_2)^2}[/mm] mit c<1 ist, das sehe ich da auch noch nicht...?


Bezug
                        
Bezug
Fixpunktaufgabe: Fälligkeit abgelaufen
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 17:23 Do 30.06.2011
Autor: matux

$MATUXTEXT(ueberfaellige_frage)
Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Nichtlineare Gleichungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de