www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Uni-Numerik" - Fixpunktiteration
Fixpunktiteration < Numerik < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Numerik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Fixpunktiteration: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 15:31 Di 30.01.2007
Autor: Bianca_1984

Aufgabe
Gesucht ist ein Fixpunkt der Funktion f(x) = tan(x) im Intervall [mm] ](k-\bruch{1}{2})\pi,(k+\bruch{1}{2})\pi[, k\in\IN^+. [/mm]
Bestimmen Sie die Fixpunkte graphisch für k = 1, 2.
Zeigen Sie, dass für beliebige [mm] x_{0}\in[(k-\bruch{1}{2})\pi,(k+\bruch{1}{2})\pi] [/mm] die Iteration [mm] x_{n+1}=k\pi+arctanx_{n} [/mm] eine geeignete Fixpunktiteration darstellt.

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

Den ersten Teil, mit der grafischen Bestimmung, habe ich schon gemacht.

Mein Problem liegt bei dem 2.Teil.

Ich habe als erstes [mm] x_{n+1}=f(x_{0}) [/mm] mit [mm] x_{0}=(k-\bruch{1}{2})\pi [/mm]
eingesetzt.
Dann nach, Auflösung der Klammer habe, ich [mm] x_{n+1}=tan(k\pi-\bruch{1}{2}\pi) [/mm] raus.
( Aber eigentlich wäre das doch nur [mm] x_{1}=tan(k\pi-\bruch{1}{2}\pi) [/mm] und nicht [mm] x_{n+1}, [/mm] da fehlt mir doch bestimmt noch ein Schritt oder? )
Nun weiß ich nicht wie ich weiter machen soll!
Unser Tutor hat noch etwas gesagt mit Monotonie erst beweisen. Verstehe aber nicht warum ich das machen sollte, kann auch sein das ich mich verhört habe.

Hoffentlich kann mir einer helfen, bedanke mich schon mal im Voraus!


        
Bezug
Fixpunktiteration: Antwort
Status: (Antwort) fertig Status 
Datum: 11:26 Mi 31.01.2007
Autor: Karl_Pech

Hallo Bianca_1984,


> Gesucht ist ein Fixpunkt der Funktion f(x) = tan(x) im
> Intervall [mm]](k-\bruch{1}{2})\pi,(k+\bruch{1}{2})\pi[, k\in\IN^+.[/mm]
> Bestimmen Sie die Fixpunkte graphisch für k = 1, 2.
>  Zeigen Sie, dass für beliebige
> [mm]x_{0}\in[(k-\bruch{1}{2})\pi,(k+\bruch{1}{2})\pi][/mm] die
> Iteration [mm]x_{n+1}=k\pi+arctanx_{n}[/mm] eine geeignete
> Fixpunktiteration darstellt.


Man könnte es ja mit dem Banachschen Fixpunktsatz versuchen. Als erstes bemerken wir, daß [mm]D:=\left[\left(k-\tfrac{1}{2}\right)\pi,\left(k+\tfrac{1}{2}\right)\pi\right][/mm] abgeschlossen ist.
Jetzt müssen wir zeigen, daß für [mm]\varphi(x):=k\pi+\arctan x[/mm] folgendes gilt: [mm]\textstyle\varphi(D) \subseteq D\wedge [L:=]\sup_{x\in D}{\left|\varphi'(x)\right|} < 1[/mm]. (Dabei ist [mm]L[/mm] die Kontraktionskonstante und kann naher bei verschiedenen Abschätzungen zu dieser Fixpunktiteration benutzt werden.)
Nach der Regel zur Ableitung von Umkehrfunktionen gilt nun wegen [mm]\tan'z = 1+\tan^2 z[/mm]: [mm]\varphi'(x) = \tfrac{1}{1+x^2} < 1[/mm], da wir hier [mm]x=0[/mm] nicht setzen dürfen, weil [mm]0\notin D[/mm], denn der kleinste Wert für [mm]k[/mm] ist hier (zum Glück ;-)) 1. (Für das Supremum - denke ich - wird der Bruch am größten, wenn [mm]x[/mm] so klein wie möglich ist, also: [mm]L := \tfrac{1}{1+(k-1/2)^2\pi^2}[/mm], aber eigentlich muß man das Supremum hier gar nicht mehr betrachten höchstens wenn man [mm]L[/mm] haben will.)

Nachdem wir nun [mm]\varphi'(x)[/mm] kennen, wissen wir, daß [mm]\varphi(x)[/mm] streng monoton steigend ist. Es sollte also reichen hier die Randpunkte von [mm]D[/mm]: [mm]\left[D_1,D_2\right] := D[/mm] zum Nachweis einer Selbstabbildung einzusetzen. Da aber [mm]q := \arctan(\star) \in\left[-\tfrac{\pi}{2},\tfrac{\pi}{2}\right][/mm] gilt, muß [mm]k\pi + q \in D[/mm] sein, weshalb [mm]x_{i+1} := \varphi\left(x_i\right)[/mm] nach dem Banachschen Fixpunktsatz zu genau einem Fixpunkt in [mm]D[/mm] konvergieren muß.



Viele Grüße
Karl




Bezug
                
Bezug
Fixpunktiteration: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 20:04 Mi 31.01.2007
Autor: Bianca_1984

Danke für deine Hilfe! Hätte das sonst nicht so hingekommen!

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Numerik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de