www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Nichtlineare Gleichungen" - Fixpunktiteration
Fixpunktiteration < Nichtlineare Gleich. < Numerik < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Nichtlineare Gleichungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Fixpunktiteration: Aufgabe
Status: (Frage) beantwortet Status 
Datum: 17:57 Sa 24.01.2009
Autor: Sina.S

Aufgabe
Zeigen Sie, dass die Gleichung [mm] (x,y)^T [/mm] = [mm] \Phi(x,y) [/mm] mit
[mm] \Phi(x,y) [/mm] = [mm] \vektor{1/6 * (x-1)^2*y^2+1/2\\ 1/8*x^2*y^4+1/2} [/mm]
genau eine Lösung [mm] (\hat x,\hat y)^T [/mm] in [mm] [0,1]^2 [/mm] hat. Führen Sie einen Schritt der Fixpunktiteration mit Startwert [mm] (x_0,y_0)^T [/mm] durch und schätzen Sie den Fehler von [mm] (x_1,y_1)^T [/mm] in der Maximumnorm [mm] ||.||_\infty [/mm] ab. Wie groß ist der Fehler [mm] ||(\hat x,\hat y)^T [/mm] - [mm] (x_4,y_4)^T||_\infty [/mm] höchstens?

Hallo,

ich hänge seit Stunden vor dieser Mammutaufgabe und sehe kein Land. Habe Newton darauf losgelassen, Normen gebildet und mich vergeblich durch angebliche Fixpunktiterationen gekämpft.

Den Part mit der einen Lösung [mm] (\hat x,\hat y)^T [/mm] in [mm] [0,1]^2 [/mm] würde ich mit Abschätzungen zeigen - komme aber auch dort auf keinen grünen Zweig und verhedder mich immer wieder.

Wie setze ich hier an - und besonders: Wie führe ich den Schritt der Fixpunktiteration durch? Ich habe bis jetzt nur Iterationen mit einer Variablen kennengelernt.

Ich schätze einmal, dass ich hier Banach anwenden muss, werde aber aus der Banch'schen Fixpunktiteration aber nicht schlau - verstehe sie also nicht - und weiß nicht, wie ich diese hier anwenden soll.

        
Bezug
Fixpunktiteration: Antwort
Status: (Antwort) fertig Status 
Datum: 20:35 Di 27.01.2009
Autor: rainerS

Hallo!

> Zeigen Sie, dass die Gleichung [mm](x,y)^T[/mm] = [mm]\Phi(x,y)[/mm] mit
>  [mm]\Phi(x,y)[/mm] = [mm]\vektor{1/6 * (x-1)^2*y^2+1/2\\ 1/8*x^2*y^4+1/2}[/mm]
>  
> genau eine Lösung [mm](\hat x,\hat y)^T[/mm] in [mm][0,1]^2[/mm] hat. Führen
> Sie einen Schritt der Fixpunktiteration mit Startwert
> [mm](x_0,y_0)^T[/mm] durch und schätzen Sie den Fehler von
> [mm](x_1,y_1)^T[/mm] in der Maximumnorm [mm]||.||_\infty[/mm] ab. Wie groß
> ist der Fehler [mm]||(\hat x,\hat y)^T[/mm] - [mm](x_4,y_4)^T||_\infty[/mm]
> höchstens?
>  Hallo,
>  
> ich hänge seit Stunden vor dieser Mammutaufgabe und sehe
> kein Land. Habe Newton darauf losgelassen, Normen gebildet
> und mich vergeblich durch angebliche Fixpunktiterationen
> gekämpft.
>  
> Den Part mit der einen Lösung [mm](\hat x,\hat y)^T[/mm] in [mm][0,1]^2[/mm]
> würde ich mit Abschätzungen zeigen - komme aber auch dort
> auf keinen grünen Zweig und verhedder mich immer wieder.
>
> Wie setze ich hier an - und besonders: Wie führe ich den
> Schritt der Fixpunktiteration durch? Ich habe bis jetzt nur
> Iterationen mit einer Variablen kennengelernt.
>  
> Ich schätze einmal, dass ich hier Banach anwenden muss,
> werde aber aus der Banch'schen Fixpunktiteration aber nicht
> schlau - verstehe sie also nicht - und weiß nicht, wie ich
> diese hier anwenden soll.

Der Banachsche Fixpunktsatz ist ein guter Ansatz. Du musst dafür ja erst einmal nachweisen, dass [mm] $\Phi$ [/mm] eine Kontraktion ist. In der Aufgabe ist die Maximumsnorm genannt. Dann musst du zeigen, dass es ein $q <1 $ gibt, sodass

  [mm]\|\Phi(x_1,y_1)-\Phi(x_2,y_2)\|_{\infty} \le q \|(x_1-x_2,y_1-y_2)^T\|_{\infty} [/mm]


Was ist denn [mm] $\|(x_1-x_2,y_1-y_2)^T\|_\infty$ [/mm] für das gegebene Quadrat [mm] $[0,1]^2$? [/mm]

Tipp zur Berechnung:

  [mm] \|\Phi(x_1,y_1)-\Phi(x_2,y_2)\|_{\infty} = \max \{|1/6 * (x_1-1)^2*y_1^2-1/6* (x_2-1)^2*y_2^2|, |1/8*x_1^2*y_1^4 - 1/8*x_2^2*y_2^4| \}[/mm]
             [mm] = \max \{1/6 * |(x_1-1)^2*y_1^2 -(x_2-1)^2*y_2^2|,1/8*|x_1^2*y_1^4-x_2^2*y_2^4|\} [/mm].

Da [mm] $0\le(x_1-1)^2*y_1^2\le1$ [/mm] und [mm] $0\le x_1^2*y_1^4\le1$ [/mm] ist (ebenso für [mm] $x_2$ [/mm] und [mm] $y_2$), [/mm] müssen die beiden Beträge auch zwischen 0 und 1 liegen. Also ist die rechte Seite [mm] $\le \bruch{1}{6}$ [/mm] ist.

Was kannst du also für q ausrechnen?

Zur Fixpunktiteration: für den Fixpunkt gilt, dass [mm] $(\hat x,\hat y)^T=\Phi(\hat x,\hat [/mm] y)$. Also ist

[mm] \|(\hat x,\hat y)^T - (\hat x_k,\hat y_k)^T \|_{\infty} \le q * \|(\hat x,\hat y)^T - (\hat x_{k-1},\hat y_{k-1})^T \|_{\infty} [/mm].

Viele Grüße
   Rainer

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Nichtlineare Gleichungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de