www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Analysis des R1" - Fixpunktiteration
Fixpunktiteration < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Analysis des R1"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Fixpunktiteration: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 18:22 Do 22.12.2011
Autor: bandchef

Aufgabe
Dividieren ohne Division. Dividieren sie diesen Bruch ohne Division sondern mit Fixpunktiteration:

[mm] $\frac{1}{a}$ [/mm]

Hi Leute!

Die oben gestellte Aufgabe hab ich nur teilweise verstanden. Soweit bin ich gekommen:

[mm] $x=\frac{1}{a}$ [/mm] soll man anscheinend mit $ax$ multiplizieren. Erste Frage: Warum gerade mit ax? Das sieht dann so aus: $x = [mm] ax^2 [/mm] = g(x)$


Nun muss man anscheinend noch Ableiten: $x = 2ax = [mm] g_1'(x)$. [/mm] Das nehm ich einfach jetzt mal so hin; das gehört ja wohl zum Algorithmus.


Des Weiteren folgt dann, dass im Fixpunkt [mm] $x=\frac{1}{a}$ [/mm] gilt: [mm] $\left| g_1' \left( \frac{1}{a} \right) \right| [/mm] = 2$. Zweite Frage: Warum macht man das nun? Was sagt mir das dann?


Nun steht hier auch noch, dass man die Fixpunktgleich weiter zu $2x = [mm] ax^2+x$ [/mm] umformen soll. Dritte Frage: Wie kommt man da drauf und vor allem wozu?


Könnt ihr mir helfen? Danke!



        
Bezug
Fixpunktiteration: Antwort
Status: (Antwort) fertig Status 
Datum: 19:23 Do 22.12.2011
Autor: MathePower

Hallo bandchef,

> Dividieren ohne Division. Dividieren sie diesen Bruch ohne
> Division sondern mit Fixpunktiteration:
>  
> [mm]\frac{1}{a}[/mm]
>  Hi Leute!
>  
> Die oben gestellte Aufgabe hab ich nur teilweise
> verstanden. Soweit bin ich gekommen:
>
> [mm]x=\frac{1}{a}[/mm] soll man anscheinend mit [mm]ax[/mm] multiplizieren.
> Erste Frage: Warum gerade mit ax? Das sieht dann so aus: [mm]x = ax^2 = g(x)[/mm]
>  


Damit eine Gleichung der Form [mm]x=g\left(x\right)[/mm] erreicht wird.


>
> Nun muss man anscheinend noch Ableiten: [mm]x = 2ax = g_1'(x)[/mm].
> Das nehm ich einfach jetzt mal so hin; das gehört ja wohl
> zum Algorithmus.
>  
>
> Des Weiteren folgt dann, dass im Fixpunkt [mm]x=\frac{1}{a}[/mm]
> gilt: [mm]\left| g_1' \left( \frac{1}{a} \right) \right| = 2[/mm].
> Zweite Frage: Warum macht man das nun? Was sagt mir das
> dann?
>  


Um zu prüfen, ob das so ermittelte Verfahren konvergiert.

Da die Ableitung im Fixpunkt nicht verschwindet konvergiert
das Verfahren auch nicht.


>
> Nun steht hier auch noch, dass man die Fixpunktgleich
> weiter zu [mm]2x = ax^2+x[/mm] umformen soll. Dritte Frage: Wie
> kommt man da drauf und vor allem wozu?
>  


Gesucht ist eine Funktion, deren Ableitung im Fixpunkt verschwindet.
Dann konvergiert das Verfahren mit der so ermittelten Funktion.


>
> Könnt ihr mir helfen? Danke!
>  


Gruss
MathePower

Bezug
                
Bezug
Fixpunktiteration: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 20:51 Do 22.12.2011
Autor: bandchef

Zitat: "Gesucht ist eine Funktion, deren Ableitung im Fixpunkt verschwindet.
Dann konvergiert das Verfahren mit der so ermittelten Funktion."

Könntest du darauf vielleicht noch etwas genauer eingehen? Kann mir nämlich da grad gar nix drunter vorstellen und weiß somit noch immer nicht wie es zu diesem Ausdruck hier kommt: $ 2x = [mm] ax^2+x [/mm] $.

Alle übrigen Fragen hast du sehr gut erklärt. Danke!

Bezug
                        
Bezug
Fixpunktiteration: Antwort
Status: (Antwort) fertig Status 
Datum: 21:43 Do 22.12.2011
Autor: MathePower

Hallo bandchef,

> Zitat: "Gesucht ist eine Funktion, deren Ableitung im
> Fixpunkt verschwindet.
>  Dann konvergiert das Verfahren mit der so ermittelten
> Funktion."
>  
> Könntest du darauf vielleicht noch etwas genauer eingehen?
> Kann mir nämlich da grad gar nix drunter vorstellen und
> weiß somit noch immer nicht wie es zu diesem Ausdruck hier
> kommt: [mm]2x = ax^2+x [/mm].
>  


Addiere auf beiden Seiten der Gleichung

[mm]a*x^{2}=x[/mm]

"x".


> Alle übrigen Fragen hast du sehr gut erklärt. Danke!


Gruss
MathePower

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Analysis des R1"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de