www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Prozesse und Matrizen" - Fixvektor berechnen
Fixvektor berechnen < Prozesse+Matrizen < Lin. Algebra/Vektor < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Prozesse und Matrizen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Fixvektor berechnen: Tipp
Status: (Frage) beantwortet Status 
Datum: 09:29 Do 20.09.2012
Autor: SallyIda

Aufgabe
Berechne den Fixvektor
[mm] \begin{pmatrix} 0,2 & 0,4 \\ 0,8 & 0,6 \end{pmatrix} [/mm]

Was ist eigentlich dann der Fixvektor, was sagt der aus?

Ich glaube man berechnet den so:

[mm] \pmat{ 0,2 & 0,4 \\ 0,8 & 0,6 } \* \vektor{x \\ y} [/mm] = [mm] \vektor{x \\ y} [/mm]

und
[mm] \pmat{ 0,2 & 0,4 \\ 0,8 & 0,6 } \* \vektor{x \\ y} [/mm] = [mm] \vektor{x \\ y} \* [/mm] E

Aber was ist E?

Naja da würde dann ja erstmal rauskommen:

[mm] \vektor{0,2x\p 0,4y \\ 0,8x \p 0,6y} [/mm] = [mm] \vektor{x \\ y} [/mm]

Also:

0,2x [mm] \p [/mm] o,4y = x
0,8x [mm] \p [/mm] o,6y = y

Also:

4y = 8x
0,5y=x

und

8x = 4y
2x=y

Soll dann der Fixvektor [mm] \vektor{x \\ 2x} [/mm] sein, weil das wäre ja nur das Verhältnis?

        
Bezug
Fixvektor berechnen: Antwort
Status: (Antwort) fertig Status 
Datum: 09:38 Do 20.09.2012
Autor: fred97


> Berechne den Fixvektor
>   [mm]\begin{pmatrix} 0,2 & 0,4 \\ 0,8 & 0,6 \end{pmatrix}[/mm]
>  Was ist eigentlich
> dann der Fixvektor, was sagt der aus?
>  
> Ich glaube man berechnet den so:
>  
> [mm]\pmat{ 0,2 & 0,4 \\ 0,8 & 0,6 } \* \vektor{x \\ y}[/mm] =
> [mm]\vektor{x \\ y}[/mm]

Genau. Jeder Vektor [mm] \vektor{x \\ y} [/mm] mit dieser Eig. ist ein Fixvektor der Matrix.


>  
> und
> [mm]\pmat{ 0,2 & 0,4 \\ 0,8 & 0,6 } \* \vektor{x \\ y}[/mm] =
> [mm]\vektor{x \\ y} \*[/mm] E
>  
> Aber was ist E?

die 2x2 - Einheitsmatrix.


>  
> Naja da würde dann ja erstmal rauskommen:
>  
> [mm]\vektor{0,2x\p 0,4y \\ 0,8x \p 0,6y}[/mm] = [mm]\vektor{x \\ y}[/mm]

Nein. Richtig:

[mm]\vektor{0,2x + 0,4y \\ 0,8x + 0,6y}[/mm] = [mm]\vektor{x \\ y}[/mm]

>  
> Also:
>  
> 0,2x [mm]\p[/mm] o,4y = x
>  0,8x [mm]\p[/mm] o,6y = y

Nein. Richtig:

0,2x [mm]+[/mm] o,4y = x
0,8x [mm]+[/mm] o,6y = y

>  
> Also:
>
> 4y = 8x
>  0,5y=x
>  
> und
>
> 8x = 4y
>  2x=y
>  
> Soll dann der Fixvektor [mm]\vektor{x \\ 2x}[/mm] sein, weil das
> wäre ja nur das Verhältnis?

Wenn es einen Fixvektor gibt, so gibt es unendlich viele ! In Deinem Fall ist für jedes x [mm] \in \IR [/mm] der Vektor

[mm]\vektor{x \\ 2x}[/mm]

ein Fixvektor.

FRED


Bezug
                
Bezug
Fixvektor berechnen: Verbesserung Rückfrage
Status: (Frage) beantwortet Status 
Datum: 10:20 Do 20.09.2012
Autor: SallyIda

Was ist mit E gemeint? also der 2x2 Einheitsmatrix?

ich hatte da ein Pluszeichen zwischen aber irgentwie habe ich da wohl was falsch eingegeben, sodass es nicht sichtbar war.

Danke für die Hilfe

Bezug
                        
Bezug
Fixvektor berechnen: Antwort
Status: (Antwort) fertig Status 
Datum: 10:30 Do 20.09.2012
Autor: fred97


> Was ist mit E gemeint? also der 2x2 Einheitsmatrix?

Ja, hab ich Dir oben doch gesagt.

FRED

>  
> ich hatte da ein Pluszeichen zwischen aber irgentwie habe
> ich da wohl was falsch eingegeben, sodass es nicht sichtbar
> war.
>  
> Danke für die Hilfe


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Prozesse und Matrizen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de