www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Stetigkeit" - Fkt indexierter Menge
Fkt indexierter Menge < Stetigkeit < Funktionen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Stetigkeit"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Fkt indexierter Menge: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 14:57 Do 07.10.2010
Autor: starik

Aufgabe
[mm] f(\bigcup_{i=1}^{I}S_{i})=\bigcup_{i=1}^{I}f(S_{i}) [/mm]

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.


Liebe Gemeinde,

habe als Hausaufgabe folgende Aufg. zu lösen und komme einfach nicht weiter.
Die Aufgabe ist: [mm] f(\bigcup_{i=1}^{I}S_{i})=\bigcup_{i=1}^{I}f(S_{i}) [/mm]

Meine Vorgehensweise wäre erst zu zeigen, dass [mm] f(\bigcup_{i=1}^{I}S_{i})\subseteq \bigcup_{i=1}^{I}f(S_{i}) [/mm]
was stimmt da [mm] f(S_{i})\subseteq f(\bigcup_{i=1}^{I}S_{i}) [/mm] für alle i aus I per Definition.

Dann komme ich aber nicht weiter, mir fehlt die Intuition (ist mein erster Beweis)...

Vielen Dank im Voraus!





        
Bezug
Fkt indexierter Menge: Antwort
Status: (Antwort) fertig Status 
Datum: 15:41 Do 07.10.2010
Autor: schachuzipus

Hallo starik,

> [mm]f(\bigcup_{i=1}^{I}S_{i})=\bigcup_{i=1}^{I}f(S_{i})[/mm]
> Ich habe diese Frage in keinem Forum auf anderen
> Internetseiten gestellt.
>
>
> Liebe Gemeinde,
>
> habe als Hausaufgabe folgende Aufg. zu lösen und komme
> einfach nicht weiter.
> Die Aufgabe ist:
> [mm]f(\bigcup_{i=1}^{I}S_{i})=\bigcup_{i=1}^{I}f(S_{i})[/mm]

Du solltest dazu sagen, wie f definiert ist, was die [mm]S_i[/mm] sind ... - sprich: den GENAUEN Aufgabentext wiedergeben.

Außerdem ist das eine komische Schreibweise: eher [mm]f\left(\bigcup\limits_{i\in I}S_i\right) \ = \ \bigcup\limits_{i\in I}f(S_i)[/mm]

>
> Meine Vorgehensweise wäre erst zu zeigen, dass
> [mm]f(\bigcup_{i=1}^{I}S_{i})\subseteq \bigcup_{i=1}^{I}f(S_{i})[/mm]


>
> was stimmt da [mm]f(S_{i})\subseteq f(\bigcup_{i=1}^{I}S_{i})[/mm]
> für alle i aus I per Definition.
>
> Dann komme ich aber nicht weiter, mir fehlt die Intuition
> (ist mein erster Beweis)...

Gerade zu Beginn solltest du dich genauestens an die Definitionen halten.

Die Idee, beide Mengeninklusionen zu zeigen, ist gut!

Zuerst [mm]\subset[/mm]

Zu zeigen ist, dass ein beliebiges [mm]y\in f\left(\bigcup\limits_{i\in I}S_i\right)[/mm] gefälligst auch in [mm]\bigcup\limits_{i\in I}f(S_i)[/mm] ist

Machen wir das:

Sei also [mm]y\in f\left(\bigcup\limits_{i\in I}S_i\right)[/mm] beliebig

[mm]\Rightarrow \exists x\in \bigcup\limits_{i\in I}S_i \ : \ f(x)=y[/mm]

Und wenn [mm]x[/mm] in der Vereinigung all dieser [mm]S_i[/mm] liegt, so liegt es wenigstens in einem der [mm]S_i[/mm], also

[mm]\Rightarrow \exists j\in I \ : \ x\in S_j[/mm]

[mm]\Rightarrow f(x)=y\in f(S_j)[/mm]

Also liegt y in einem der [mm]f(S_i)[/mm], nämlich in [mm] $f(S_j)$, [/mm] damit auch in der Vereinigung aller, dh.

[mm]\Rightarrow y\in\bigcup\limits_{i\in I}f(S_i)[/mm]

So in etwa ist das gemeint, nun versuche mal die andere Inklusion [mm]\supset[/mm] (auch möglichst an die Definitionen halten ...)

>
> Vielen Dank im Voraus!
>

Gruß

schachuzipus


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Stetigkeit"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de