www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Integrationstheorie" - Fktn verschwindet fast überall
Fktn verschwindet fast überall < Integrationstheorie < Maß/Integrat-Theorie < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Integrationstheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Fktn verschwindet fast überall: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 00:10 Do 06.07.2006
Autor: FrankM

Aufgabe
Zeigen sie für f [mm] \in L^1_{loc}(\IR^n) [/mm] und U [mm] \subset \IR^n [/mm] offen sind äquivalent:
(1)für alle unendlich oft differenzierbaren Fktn [mm] \phi [/mm] mit [mm] supp(\phi)\subset [/mm] U gilt  [mm] \integral_{U}{f\phi}=0 [/mm]
(2) f=0 fast überall auf U

Hallo,

von (2) nach (1) ist kein Problem. Aber ich weiß nicht so recht wie ich die Richtung (1) [mm] \Rightarrow [/mm] (2) zeigen soll. Wahrscheinlich soll man dabei nutzen, dass man für jedes K [mm] \subset [/mm] U kompakt eine unendlich oft differenzierbare Fktn [mm] \phi [/mm] findet, mit [mm] 0\le \phi \le [/mm] 1 und [mm] \phi [/mm] =1 auf K und [mm] \phi=0 [/mm] auf [mm] \IR^n \backslash [/mm] U. (Das war die Aufgabe davor). Aber leider habe ich keine richtige Idee, wie ich damit die Behauptung zeigen kann.

Gruß
Frank

        
Bezug
Fktn verschwindet fast überall: Antwort
Status: (Antwort) fertig Status 
Datum: 11:07 Do 06.07.2006
Autor: MatthiasKr

Hallo Frank,

was habt ihr denn schon so für instrumente in der VL gehabt? dirac-folgen, faltungen...? ich habe mal ein wenig im netz recherchiert und der einzige beweis deiner aussage (die sich auch 'fundamentallemma der variationsrechnung' nennt), den ich gefunden habe, benutzt diese techniken... ist das f glatt, so lässt sich die aussage recht leicht beweisen. Ist f nur in [mm] $L^1_{loc}$, [/mm] so muss man die funktion vermutlich erst glätten und das geht am besten durch faltung mit einer dirac-folge.

Gruß
Matthias

Bezug
                
Bezug
Fktn verschwindet fast überall: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 13:31 Do 06.07.2006
Autor: FrankM

Hallo Matthias,

erstmal vielen Dank für deine Antwort. Wir behandeln im Moment Distributionen und haben in dem Zusammenhang auch schon die Diracsche Delta-Distribution und Faltung von Distributionen behandelt, allerdings keine Dirac-Fogen. Wenn du noch den Link zum Beweis hast, wäre es super, wenn du ihn mir schicken könntest.

Gruß
Frank

Bezug
                        
Bezug
Fktn verschwindet fast überall: Antwort
Status: (Antwort) fertig Status 
Datum: 13:45 Do 06.07.2006
Autor: MatthiasKr

Schau zB. mal []hier nach...

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Integrationstheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de