www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Abiturvorbereitung" - Fläche Berechnen
Fläche Berechnen < Abivorbereitung < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Abiturvorbereitung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Fläche Berechnen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 19:38 Mi 17.01.2007
Autor: sara_99

Aufgabe
Gegeben ist für jedes t > 0 die Funktion f (x)= [mm] \bruch{1}{6t} [/mm] (x - [mm] t)^{2} (x+t)^{2}. [/mm]

Durch den Punkt P ( u  | f (u) ) mit 0 < u < 3 werden die Parallelen zu den Koordinatenachsen gezeichnet. Diese Parallelen durch P begrenzen mit den Koordinatenachsen im ersten Feld ein Rechteck. Bestimmen Sie u so, dass der Flächeninhalt A (u) dieses Rechtecks extremal wird. Untersuchen Sie dann die Art des Extremums.

Hallo,
ich habe leider keine Ahnung, wie ich das berechnen kann. Geht das mit der Integralrechnung (leider ist das lange her, seit ich das letzte Mal sowas gerechnet habe). Deshalb wäre ich echt dankbar, wenn mir jemand in der Richtung eine Stathilfe geben würde. Wie sähe das Integral aus?

Und was ist mit "der Art des Extremums" gemeint?

Danke für jeden Tipp.

        
Bezug
Fläche Berechnen: Vermutung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 20:15 Mi 17.01.2007
Autor: Zwerglein

Hi, sarah,

> Gegeben ist für jedes t > 0 die Funktion f (x)=
> [mm]\bruch{1}{6t}[/mm] (x - [mm]t)^{2} (x+t)^{2}.[/mm]
>  
> Durch den Punkt P ( u  | f (u) ) mit 0 < u < 3 werden die
> Parallelen zu den Koordinatenachsen gezeichnet. Diese
> Parallelen durch P begrenzen mit den Koordinatenachsen im
> ersten Feld ein Rechteck. Bestimmen Sie u so, dass der
> Flächeninhalt A (u) dieses Rechtecks extremal wird.
> Untersuchen Sie dann die Art des Extremums.

Ich vermute mal, Du hast vergessen, uns zu schreiben, dass für diese Teilaufgabe t=3 gesetzt wird!? Nur dann macht die Vorgabe von 0 < u < 3 Sinn!
(Bitte um Bestätigung oder Richtigstellung: Ansonsten bringt eine Hilfestellung nichts!)

>  Hallo,
>  ich habe leider keine Ahnung, wie ich das berechnen kann.
> Geht das mit der Integralrechnung (leider ist das lange
> her, seit ich das letzte Mal sowas gerechnet habe).

Nein! Keine Integralrechnung! Es geht um die Fläche eines Rechtecks! Die berechnet man: Länge mal Breite!
Zeichne doch mal eine Skizze der Situation: Graph der Funktion mit Rechteck im I.Quadranten!
  

> Und was ist mit "der Art des Extremums" gemeint?

Naja: Ist's ein MAXIMUM oder ist's ein MINIMUM!?

(Wird wohl ein Maximum sein! - Aber das muss die Rechnung zeigen!)

mfG!
Zwerglein

Bezug
                
Bezug
Fläche Berechnen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 20:32 Mi 17.01.2007
Autor: sara_99

Nein, da steht nichts von t=3... ich habe die Aufgabe so abgeschrieben, wie sie auf dem Zettel stand.

Achso, okay, danke... Integralrechnung ging ja nur bei Funtionen (?).
Ja, ich habe mir jetzt ein Skizze gemalt... Aber, da das u ja nicht festgelegt ist, wüsste ich jetzt nicht, wie ich weiter vorgehen soll.

Bezug
                        
Bezug
Fläche Berechnen: Antwort
Status: (Antwort) fertig Status 
Datum: 20:52 Mi 17.01.2007
Autor: Zwerglein

Hi, Sarah,

> Nein, da steht nichts von t=3... ich habe die Aufgabe so
> abgeschrieben, wie sie auf dem Zettel stand.
>  
> Achso, okay, danke... Integralrechnung ging ja nur bei
> Funktionen (?).

Zumindest ist sie nur dann "notwendig"!

>  Ja, ich habe mir jetzt ein Skizze gemalt... Aber, da das u
> ja nicht festgelegt ist, wüsste ich jetzt nicht, wie ich
> weiter vorgehen soll.

Wenn t wirklich nicht vorgegeben ist, wird wohl eine Fallunterscheidung
0 < t < 3;  t=3;  t>3 nötig!
(Eigentlich kommt mir das aber SEEEHR unwahrscheinlich vor!)

Naja!
Ich zeig' Dir mal, wie die Aufgabe anfängt:
Das Rechteck hat die Breite u und die Höhe f(u), demnach die Fläche:

A(u) = u*f(u) = [mm] \bruch{1}{6t}*u*(u-t)^{2}*(u+t)^{2} [/mm]
bzw. umgeformt:

A(u) =  [mm] \bruch{1}{6t}*u*(u^{2} [/mm] - [mm] t^{2})^{2} [/mm]

Das musst Du nun nach u ableiten und die Ableitung =0 setzen.

Dazu nun meine Frage: Kennst Du die Produktregel und die Kettenregel?

mfG!
Zwerglein


Bezug
                                
Bezug
Fläche Berechnen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 21:09 Mi 17.01.2007
Autor: sara_99

Achso, dann könnte man rein theoretisch auch hier Integralrechnung anwenden?

Ahh, danke! Ja, die kenne ich. Aber warum leitet man das jetzt ab?

Bezug
                                        
Bezug
Fläche Berechnen: Antwort
Status: (Antwort) fertig Status 
Datum: 21:31 Mi 17.01.2007
Autor: Cristina

Hallo Sara!

Die Ableitung bestimmen tust du, weil du ein Extremum berechnen möchtest. Dazu ist [mm]f'(x_{0})=0 \wedge f''(x_{0})<0[/mm] hinreichende Bedingung für ein lokales (ev. auch globales) Maximum an der Stelle [mm]x_{0}[/mm] bzw. [mm]f'(x_{0})=0 \wedge f''(x_{0})>0[/mm] hinreichende Bedingung für ein lokales (ev. auch globales) Minimum an der Stelle [mm]x_{0}[/mm].

Die Integralrechnung wird verwendet, um Flächeninhalte unter Graphen zu bestimmen.

Liebe Grüsse von Cristina

Bezug
                                                
Bezug
Fläche Berechnen: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 21:35 Mi 17.01.2007
Autor: sara_99

Stimmt, danke, ich habe die ganze Zeit an Flächenberechnung gedacht....

Danke auch nochmal an Zwerglein! :-)

Bezug
        
Bezug
Fläche Berechnen: Steckbriefaufgaben
Status: (Antwort) fertig Status 
Datum: 10:56 So 21.01.2007
Autor: informix

Hallo sara_99,

> Gegeben ist für jedes t > 0 die Funktion f (x)=
> [mm]\bruch{1}{6t}[/mm] (x - [mm]t)^{2} (x+t)^{2}.[/mm]
>  
> Durch den Punkt P ( u  | f (u) ) mit 0 < u < 3 werden die
> Parallelen zu den Koordinatenachsen gezeichnet. Diese
> Parallelen durch P begrenzen mit den Koordinatenachsen im
> ersten Feld ein Rechteck. Bestimmen Sie u so, dass der
> Flächeninhalt A (u) dieses Rechtecks extremal wird.
> Untersuchen Sie dann die Art des Extremums.
>  Hallo,
>  ich habe leider keine Ahnung, wie ich das berechnen kann.
> Geht das mit der Integralrechnung (leider ist das lange
> her, seit ich das letzte Mal sowas gerechnet habe). Deshalb
> wäre ich echt dankbar, wenn mir jemand in der Richtung eine
> Stathilfe geben würde. Wie sähe das Integral aus?
>  
> Und was ist mit "der Art des Extremums" gemeint?
>  
> Danke für jeden Tipp.

[guckstduhier] MBSteckbriefaufgaben in unserer MBMatheBank

Gruß informix

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Abiturvorbereitung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de