www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Differenzialrechnung" - Fläche ableiten
Fläche ableiten < Differenzialrechnung < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Differenzialrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Fläche ableiten: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 14:39 Do 07.02.2013
Autor: jackyooo

Hey,

folgendes Szenario: Ich führe ein Dreieck mit der Spitze in ein homogenes Feld ein. (konstante Geschwindigkeit [mm] v_0 [/mm] )

[Dateianhang nicht öffentlich]

Wenn ich jetzt den Zeitpunkt an dem die Spitze ins Feld eintritt als t=0 bezeichne, kann ich folgende Funktion der Fläche berechnen:

[mm] $A(z)=\frac{az}{2}$ [/mm]

[mm] $v_0=\frac{z}{t}$ [/mm]

[mm] $\Rightarrow A(t)=\frac{v_0 t a}{2}$ [/mm]

Ich will aber die Flächenänderung(t) haben. Müsste ich dann nicht einfach die Funktion nach ableiten?
Sprich

[mm] $\frac{dA}{dt}=\frac{v_0 a}{2}$ [/mm]

Nur ist das halt Quatsch, weil die Flächenänderung ja nicht linear ist. Wo ist mein Denkfehler?

Dateianhänge:
Anhang Nr. 1 (Typ: JPG) [nicht öffentlich]
        
Bezug
Fläche ableiten: Antwort
Status: (Antwort) fertig Status 
Datum: 14:57 Do 07.02.2013
Autor: Diophant

Hallo,

der Fehler in der Berechnung ist der, dass du mit einer konstanten Grundseite a rechnest. In Wirklichkeit ist aber die Grundseite des Dreiecks, welches sich in dem Feld befindet, genau so von t abhängig, wie die Eindringtiefe z.

Wir haben

[mm] z=v_0*t [/mm]

und mit dem Strahlensatz

[mm] \bruch{x}{z}=\bruch{a}{b} [/mm]

und damit die Grundseite x mit

[mm] x=z*\bruch{a}{b}=v_0*\bruch{a}{b}*t [/mm]

Wenn du damit die Flächeninhaltsfunktion A(z) bzw. A(t) aufstellst, wird sie quadratisch, genau so, wie es sein sollte.

> Ich will aber die Flächenänderung(t) haben. Müsste ich
> dann nicht einfach die Funktion nach ableiten?

Doch, genau so ist es. Aber halt mit der richtigen Funktion. ;-)


Gruß, Diophant

Bezug
                
Bezug
Fläche ableiten: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 15:50 Do 07.02.2013
Autor: jackyooo

Aah, stimmt.

Also:

$$A(z)=zy$$
[mm] $$\frac{z}{y}=\frac{b}{a}$$ [/mm]
[mm] $$\Rightarrow A(z)=\frac{z^2 a}{b}$$ [/mm]
mit $z=vt$
[mm] $$\Rightarrow A(t)=\frac{v^2 t^2 a}{b}$$ [/mm]
[mm] $$\frac{dA}{dt}=\frac{2tav^2}{b}$$ [/mm]

Stimmt das so?

Bezug
                        
Bezug
Fläche ableiten: Antwort
Status: (Antwort) fertig Status 
Datum: 16:04 Do 07.02.2013
Autor: Diophant

Hallo,

> Aah, stimmt.
>
> Also:
>
> [mm]A(z)=zy[/mm]
> [mm]\frac{z}{y}=\frac{b}{a}[/mm]
> [mm]\Rightarrow A(z)=\frac{z^2 a}{b}[/mm]
> mit [mm]z=vt[/mm]
> [mm]\Rightarrow A(t)=\frac{v^2 t^2 a}{b}[/mm]
>
> [mm]\frac{dA}{dt}=\frac{2tav^2}{b}[/mm]
>
> Stimmt das so?

Nein: denn jetzt ist es kein Dreieck mehr, sondern ein Rechteck.


Gruß, Diophant


Bezug
                                
Bezug
Fläche ableiten: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 16:24 Do 07.02.2013
Autor: jackyooo


> Hallo,
>  
> > Aah, stimmt.
>  >

> > Also:
>  >

> > [mm]A(z)=zy[/mm]
>  > [mm]\frac{z}{y}=\frac{b}{a}[/mm]

>  > [mm]\Rightarrow A(z)=\frac{z^2 a}{b}[/mm]

>  > mit [mm]z=vt[/mm]

>  > [mm]\Rightarrow A(t)=\frac{v^2 t^2 a}{b}[/mm]

>  >

> > [mm]\frac{dA}{dt}=\frac{2tav^2}{b}[/mm]
>  >

> > Stimmt das so?
>
> Nein: denn jetzt ist es kein Dreieck mehr, sondern ein
> Rechteck.

Sicher? Wähle [mm] $v=\frac{b}{2s}\\t=1s$ [/mm]
[mm] \Rightarrow $A(1s)=\frac{ab}{4}$ [/mm]
$A(2s)=ba$

Passt doch?

Bezug
                                        
Bezug
Fläche ableiten: Antwort
Status: (Antwort) fertig Status 
Datum: 17:20 Do 07.02.2013
Autor: chrisno

Das hängt ein wenig davon ab, wie groß die Geschwindigkeit ist. Nach Deiner Rechnung ist nach 2 s die doppelte Fläche des Dreiecks eingetaucht.

Bezug
                                                
Bezug
Fläche ableiten: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 17:30 Do 07.02.2013
Autor: jackyooo

Stimmt. Und wo ist dann der Fehler in meiner Rechnung? Bin das jetzt 2mal durchgegangen und seh einfach keinen Fehler (abgesehen dass es wie du sagst nicht stimmt)

Bezug
                                                        
Bezug
Fläche ableiten: Antwort
Status: (Antwort) fertig Status 
Datum: 17:53 Do 07.02.2013
Autor: abakus


> Stimmt. Und wo ist dann der Fehler in meiner Rechnung? Bin
> das jetzt 2mal durchgegangen und seh einfach keinen Fehler
> (abgesehen dass es wie du sagst nicht stimmt)

Der Flächeninhalt eines Dreiecks ist 0,5*g*h.
Du hast den Faktor 0,5 vergessen.
Gruß Abakus


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Differenzialrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de