www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Integralrechnung" - Fläche zwischen 2 Graphen
Fläche zwischen 2 Graphen < Integralrechnung < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Integralrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Fläche zwischen 2 Graphen: Korrektur
Status: (Frage) beantwortet Status 
Datum: 12:00 Sa 18.11.2006
Autor: Karlchen

Aufgabe
Wie groß ist die Fläche, die zwischen den Graphen von f und g begrenzt wird?

[mm] f(x)=x^{3} [/mm]
g(x)= x+1
I=[-1;1]

Guten Morgen zusammen!

Also eigentlich habe ich alles verstanden, nur ich bin mir bei meinem Ergebnis unsicher.

[mm] A=\integral_{-1}^{1}{x+1 dx}-\integral_{-1}^{0}{x^{3}dx} [/mm] - [mm] \integral_{0}^{-1}{x^{3} dx} [/mm]
= (0,5 * [mm] 1^{2}+1-(0,5*(-1)^{2}-1)) [/mm] - [mm] (0-\bruch{1}{4}*(-1)^{4}) [/mm] - [mm] (\bruch{1}{4}*(-1)^{4}-0) [/mm]
= 1,5+0,5
=2

So meine Frage ist jez eigetnlich nur ob das richtig? weil eiegtnlich hätte ich  ja mit f(x) anfangen müssen, hab aber mit g(x) abgefangen, weil wenn ich das anders rimmache kommt 0 heraus und das kann ja nicht sein, oder?

Wär sehr nett wenn mir da jemand weiterhlefen könnte^^

Gruß Karlchen

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Fläche zwischen 2 Graphen: Antwort
Status: (Antwort) fertig Status 
Datum: 12:48 Sa 18.11.2006
Autor: chmul

Hallo Karlchen,

> Wie groß ist die Fläche, die zwischen den Graphen von f und
> g begrenzt wird?
>  
> [mm]f(x)=x^{3}[/mm]
>  g(x)= x+1
>  I=[-1;1]
>  Guten Morgen zusammen!
>  
> Also eigentlich habe ich alles verstanden, nur ich bin mir
> bei meinem Ergebnis unsicher.
>  
> [mm]A=\integral_{-1}^{1}{x+1 dx}-\integral_{-1}^{0}{x^{3}dx}[/mm] -
> [mm]\integral_{0}^{-1}{x^{3} dx}[/mm]
>  = (0,5 *
> [mm]1^{2}+1-(0,5*(-1)^{2}-1))[/mm] - [mm](0-\bruch{1}{4}*(-1)^{4})[/mm] -
> [mm](\bruch{1}{4}*(-1)^{4}-0)[/mm]
> = 1,5+0,5
>  =2

[ok] Ergebnis ist schon mal richtig!

> So meine Frage ist jez eigetnlich nur ob das richtig? weil
> eiegtnlich hätte ich  ja mit f(x) anfangen müssen, hab aber
> mit g(x) abgefangen, weil wenn ich das anders rimmache
> kommt 0 heraus und das kann ja nicht sein, oder?

Also, das Problem ist, dass du wenn du einen Flächeninhalt zwischen zwei Funktionen berechnen willst, du dich erst einmal vergewissern musst, ob sich die Funktionen in dem gegebenen Intervall schneiden.
Falls Ja, musst du das Integral aufteilen, so dass du positive Flächen erhältst. Denn unter Umständen kann es passieren, dass du einen viel kleineren oder sogar negativen "Flächeninhalt" bekommst, als er in Wirklichkeit ist.
Bei dieser Aufgabe gibt es allerdings keinen Schnittpunkt in dem gegebenem Intervall. Bleibt also nur zu Überprüfen, welcher Graph über dem anderen liegt:

Da [mm]x^3\not=x+1 [/mm] für alle [mm]x \in [-1;1] [/mm] langt es, mit einem x-Wert zu Überprüfen, welcher Graph "höher" liegt:
Sei [mm] x=0 \Rightarrow g(0)=1 > 0=f(0) [/mm]
Also liegt g(x) "höher".

Daraus folgt nun für unser Integral:
[mm] \integral_{-1}^{1}{g(x)-f(x) dx}=\integral_{-1}^{1}{x+1-x^3 dx}=[-\bruch{1}{4}x^4+\bruch{1}{2}x^2+x]_{-1}^{1} [/mm] = [mm] -\bruch{1}{4}1^4+\bruch{1}{2}1^2+1-(-\bruch{1}{4}(-1)^4+\bruch{1}{2}(-1)^2+(-1))=2 [/mm]

Wie du siehst musst du dein Integral in diesem Fall gar nicht aufteilen, da du die Stammfunktion von g(x)-f(x) ja ohne weiteres bilden kannst.

> Wär sehr nett wenn mir da jemand weiterhlefen könnte^^

Ich hoffe ich konnte dir helfen ;-).

MfG
Christoph

Bezug
                
Bezug
Fläche zwischen 2 Graphen: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 12:51 Sa 18.11.2006
Autor: Karlchen

Ohja...rechtherzlichen Dank, hab wieder was dazu gelernt^^

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Integralrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de