www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Reelle Analysis mehrerer Veränderlichen" - Flächen von Zykloidensektoren
Flächen von Zykloidensektoren < mehrere Veränderl. < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Reelle Analysis mehrerer Veränderlichen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Flächen von Zykloidensektoren: doppelInt mit Polarkoordinaten
Status: (Frage) beantwortet Status 
Datum: 20:14 Mo 23.02.2009
Autor: Isaac_N

Aufgabe
[mm] X=1\bruch{1}{2}R*COS(\bruch{\alpha*\pi}{180°})-\bruch{1}{5}R*COS(3*(\bruch{\alpha*\pi}{180°}) [/mm]

[mm] Y=1\bruch{1}{2}R*SIN(\bruch{\alpha*\pi}{180°})-\bruch{1}{5}R*SIN(3*(\bruch{\alpha*\pi}{180°}) [/mm]

Polar:
[mm] TAN\phi=\bruch{Y}{X} [/mm]

[mm] r=\wurzel{X^2+Y^2} [/mm]

[mm] Ages\approx3*\pi*R^2 [/mm]

Hallo, an alle fleißigen und leser...

hier schreibt nun ein maschinenbauTechniker im mathe-forum (richtet selbst) :)

mein problem besteht darin den flächeninhalt von "tortenstückchen" eines Epizykloiden (bzw. Epitrochoiden) zu bestimmen. (siehe Wankelmotor)

Die aufgeführten formel sind bereits auf ein bestimmtes R; r; excenter - verhältnis zusammengekürzt und auf R bezogen. Aus den kartesischen koordinaten ließen sich auch die polarkoordinaten umstellen. Soweit also alles i.o.!
Beim durchstöbern von kiloweise fachliteratur und diverser foren des "matheraums", scheint die Lösung meines problems das doppelintegrieren der polarkoordinaten, also  [mm] r(\phi) [/mm] zu sein. Leider muss ich jetzt zugeben dass meine ausbildung solche tools nicht lehrt. (DANKE STB(
Wer mir also helfen möchte müsste das schon etwas genauer machen!?!

(Weitere Hinweise: excel-dat im Anhang; Bronstein (A5) - Kurven 4. Ordnung S.85)
(sollten sich hier maschbauer beteiligen... [mm] V_k [/mm] hilft mit leider nicht. Ich will auf das kompressionsverhalten in der ladekammer hinaus. Also [mm] A_n*h.) [/mm]

...vielen dank im voraus

[mm] Isaac_N [/mm]

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

Dateianhänge:
Anhang Nr. 1 (Typ: xls) [nicht öffentlich]
        
Bezug
Flächen von Zykloidensektoren: Antwort
Status: (Antwort) fertig Status 
Datum: 21:43 Mo 23.02.2009
Autor: leduart

Hallo
1. Mathematisch sollte man das nicht mit Winkeln in Grad, sondern im Bogenmass integrieren.
2. R ist nur ein Masstabsfaktor, also lasst es weg.
bleibt die parametrisierte Kurve
[mm] \vec{c(t)}=\vektor{1,5cos(t)-0.2cos(3t) \\ 1,5sin(t)-0.2sin(3t)} [/mm]
davon bildest du den Tangentenvektor [mm] \vec{c'(t)} [/mm]
Dann hast du ein infinitesimales Dreieck mit dem Kreuzprodukt von

$dA= [mm] 0.5*\vec{c} \times \vec{c'}*dt$ [/mm]

darueber musst du integrieren, also kein eigentliches Doppelintegral.
Ob das Integral einfach genug wird, weiss ich nicht.
Gruss leduart



Bezug
                
Bezug
Flächen von Zykloidensektoren: leider keine direkte lösung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 16:40 Mi 04.03.2009
Autor: Isaac_N

ersteinmal vielen dank für deine antwort und ein "sorry" für die späte rückmeldung!

Ich musste erstmal nachvollziehen was deine antwort für mein problem zu bedeuten hat.
Ich kam nur leider zu dem punkt das die parametrisierte kurve sich um [mm] \pi [/mm] in der phasenweite verschiebt und es daher keine analytische lösung des integrals geben kann. Ich hab den flächeninhalt der törtenstückchen nun durch numerische integrtion herleiten können und die genauigkeit mit 72 punkten ist ganz ok.

(ich habe duchr deine antwort aber viel dazugelernt :) )

(nachtrag: die formel zu Ages ist quatsch, falsch abgeschrieben)

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Reelle Analysis mehrerer Veränderlichen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de