www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Integralrechnung" - Flächenberechnung
Flächenberechnung < Integralrechnung < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Integralrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Flächenberechnung: Aufgabe korrigiert
Status: (Frage) beantwortet Status 
Datum: 18:15 Mi 13.12.2006
Autor: mathpsycho

Aufgabe
Berechnen Sie die Maßzahl der Fläche, die vom Graphen der Funktion f(x)=(6x+12)/(x²+4x), ihrer Wendetangente und den Geraden x=-3,5 und x=-0,5 eingeschlossen wird.

Hallo!

Die Wendetangente ist t(x)=-1,5x-3.

Somit gilt für die gesuchte Fläche: [mm] A=\integral_{-3,5}^{-0,5}{|\bruch{6x+12}{x²+4x}+1,5x+3| dx} [/mm]

Die Funktion ist punktsymmetrisch zu (-2|0). Deshalb gilt:
[mm] A=2*\integral_{-3,5}^{-2}{\bruch{6x+12}{x²+4x}+1,5x+3 dx}. [/mm]

Mein Problem ist, dass ich das obige Integral nicht lösen kann. Ich habe es aufgespalten und versucht partielle Integration anzuwenden. Dabei kam ich zu keinem Ergebnis. Alle übrigen Versuche scheiterten ebenfalls.
Wie berechne ich dieses Integral?

Zur Kontrolle: Die Lösung ist [mm] A\sim1,59. [/mm]

Vielen Dank!

MathPsycho



PS:
Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Flächenberechnung: faktorisieren + kürzen
Status: (Antwort) fertig Status 
Datum: 18:29 Mi 13.12.2006
Autor: Loddar

Hallo mathpsycho!


Ich habe hier doch auch zunächst mit einer MBPartialbruchzerlegung angesetzt. Aber es geht viel einfacher, wenn Du bei dem Bruch Zähler und Nenner faktorisierst:

[mm] $\bruch{6x+12}{x^2-4} [/mm] \ = \ [mm] \bruch{6*(x+2)}{(x-2)*(x+2)}$ [/mm]


Ist nun der weitere Rechenweg klar?


Gruß
Loddar


Bezug
                
Bezug
Flächenberechnung: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 17:28 Fr 15.12.2006
Autor: mathpsycho

Hallo Loddar!

Danke für Deine Mühe. Leider habe ich mich bei der Funktion verschrieben und die eigentliche Aufgabe ist schwieriger. Ich habe Sie gerade korrigiert.
MP

Bezug
        
Bezug
Flächenberechnung: Partialbruchzerlegung
Status: (Antwort) fertig Status 
Datum: 17:37 Fr 15.12.2006
Autor: Loddar

Hallo mathpsycho!


Dann kommst Du hier wohl doch nicht um eine MBPartialbruchzerlegung:

[mm] $\bruch{6x+12}{x^2+4x} [/mm] \ = \ [mm] \bruch{6x+12}{x*(x+4)} [/mm] \ = \ [mm] \bruch{A}{x} +\bruch{B}{x+4}$ [/mm]


Kommst Du mit diesem Hinweis weiter? Anschließend die beiden Brüche separat integrieren.



Gruß
Loddar


Bezug
                
Bezug
Flächenberechnung: Versuch
Status: (Frage) beantwortet Status 
Datum: 22:07 Sa 16.12.2006
Autor: mathpsycho

Hallo Loddar!

Hier nun mein Lösungsversuch.

[mm] \bruch{6x+12}{x²+4x}=\bruch{6x+12}{x*(x+4}=\bruch{A}{x}+\bruch{B}{x+4} [/mm]
[mm] \Rightarrow [/mm] A(x+4)+B(x)=6x+12
[mm] \Rightarrow [/mm] A=3 und B=3

[mm] $2*\integral_{-3,5}^{-2}{\bruch{6x+12}{x²+4x} dx}=2*(\integral_{-3,5}^{-2}{\bruch{3}{x} dx}+\integral_{-3,5}^{-2}{\bruch{3}{x+4} dx})=2*[3 [/mm] ln(x)+3 [mm] ln(x+4)]_{-3,5}^{-2}$ [/mm]

Um Probleme mit den Logarithmen negativer Zahlen zu vermeiden wende ich die Logarithmengesetze an.

[mm] A_{1}=3[ln(x²)+2 ln(x+4)]_{-3,5}^{-2} [/mm]
[mm] $A_{1}=3(ln4 [/mm] +2 ln2 -(ln12.25 +2 ln0.5))$
[mm] A_{1}=4,9600 [/mm]

Fläche unter der Wendetangente: [mm] A_{2}=2*[-0,75x²-3x]_{-3,5}^{-2}=3,375 [/mm]

[mm] A=A_{1}-A_{2}=1,5851 [/mm] Stimmt!

Vielen Dank!

MathPsycho

Bezug
                        
Bezug
Flächenberechnung: Betrag
Status: (Antwort) fertig Status 
Datum: 09:03 So 17.12.2006
Autor: Loddar

Hallo mathpsycho!


> [mm]2*\integral_{-3,5}^{-2}{\bruch{6x+12}{x²+4x} dx}=2*(\integral_{-3,5}^{-2}{\bruch{3}{x} dx}+\integral_{-3,5}^{-2}{\bruch{3}{x+4} dx})=2*[3 ln(x)+3 ln(x+4)]_{-3,5}^{-2}[/mm]
>  
> Um Probleme mit den Logarithmen negativer Zahlen zu
> vermeiden wende ich die Logarithmengesetze an.

Das geht viel einfacher und vor allen Dingen auch mathematisch sauberer .... zu den Stammfunktionen der Brüche gehören nämlich jeweils noch Betragsstriche:

[mm] $\integral{\bruch{1}{z} \ dz} [/mm] \ = \ [mm] \ln\red{|}z\red{|}+C$ [/mm]

Damit ist die Problematik der negativen Grenzen automatisch gelöst.


Gruß
Loddar


Bezug
                                
Bezug
Flächenberechnung: Danke!
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 20:19 So 17.12.2006
Autor: mathpsycho

Vielen Dank!

MP

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Integralrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de