www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Schul-Analysis" - Flächeninhalt
Flächeninhalt < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Schul-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Flächeninhalt: zwei Graphen
Status: (Frage) beantwortet Status 
Datum: 13:00 Do 22.12.2005
Autor: hooover

Aufgabe
Zeigen Sie, dass der Inhlt der von den Graphen eingeschlossenen Fläche


[mm] A(k)=4\wurzel\bruch{3k}{k^2+1} [/mm]

beträgt!

Hallo liebe Leute

hier eine scheinbar simple Aufgabe

die es doch sehr in sich hat.

Gegben sind noch


[mm] f_{k}(x)=kx^2 [/mm]

[mm] g_{k}(x)=3-\bruch{x^2}{k} [/mm]


also mir fällt dazu nicht allzuviel ein

nur das ich erstmal die Stammfunktionen von den jeweiligen Fkt. bilde.


[mm] f_{k}(x)=kx^2 [/mm]            

[mm] F_{k}(x)=\bruch{k}{3}x^3 [/mm]          und


[mm] g_{k}(x)=3-\bruch{x^2}{k} [/mm]  

[mm] G_{k}(x)=1-\bruch{x^3}{k} [/mm]             wobei ich mir bei der nicht sicher bin


dann dachte ich wie die Gesamtfläche auszusehen hätte.

[mm] A_{ges}=A_{f_{k}}+A_{g_{k}} [/mm]

aber villeicht kann mir jemand sagen ob das der richtige Ansatz ist.

schon aml vielen Dank

        
Bezug
Flächeninhalt: Hinweis
Status: (Antwort) fertig Status 
Datum: 13:38 Do 22.12.2005
Autor: QCO

Also ganz allgemein rechnet man, wenn man die Fläche zwischen zwei Graphen bestimmen will, Integral obere Funktion - Integral untere Funktion.
Mathematisch ausgedrückt:
Es sei f(x) [mm] \ge [/mm] g(x). Die Fläche zwischen beiden Funktionen ist dann
A=  [mm] \integral_{a}^{b} [/mm] {f(x)-g(x) dx} .
Das gilt wirklich nur, solange f(x) [mm] \ge [/mm] g(x), wenn das mal nur auf manchen Intervallen gilt, muss du die Intervalle einzeln integrieren.
Eine schöne Grafik, die das veranschaulicht, findest du unter
[]http://www.schuelerlexikon.de/tafelwerk/700/fs_mcd/tw_s38.htm

So, um jetzt diese Aufgabe zu lösen, musst du außerdem noch die Grenzen a und b bestimmen, in denen du integrierst.
Das sind die Punkte, in denen sich [mm] f_{k} [/mm] und [mm] g_{k} [/mm] schneiden.

Kontrollergebnis für dich: a=- [mm] \bruch{\wurzel{3 k}}{k^{2}+1} [/mm]

Jetzt musst du 'nur' noch integrieren.

Deine zweite Stammfunktion [mm] G_{k} [/mm] ist aber falsch.
Es müsste [mm] G_{k} [/mm] = 3 x - [mm] \bruch{x^{3}}{3 k} [/mm] sein.

So, ich hoffe mit dieser kleinen Anleitung kannst du die Aufgabe lösen

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Schul-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de