www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Integration" - Flächeninhalt
Flächeninhalt < Integration < Funktionen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Integration"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Flächeninhalt: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 14:40 Fr 10.10.2008
Autor: Mathefragen

Aufgabe
Sei B:= {(x,y) € R²: 1 [mm] \le [/mm] x [mm] \le [/mm] 2, -1 [mm] \le [/mm] y [mm] \le [/mm] 1 } und sei F der Graph der Abbildung f: B-> R. f((x,y)) := [mm] \wurzel{x²+y²}. [/mm] Berechnen Sie den Flächeninhalt von F.

Hi! :) Ich hab obige Aufgabe errechnet - leider liegt mir hier keine Lösung vor. Als Ergebnis hab ich 2 [mm] \wurzel{2} [/mm] erhalten. Und wollte nun fragen, ob dies stimmt? :)

        
Bezug
Flächeninhalt: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 14:45 Fr 10.10.2008
Autor: fred97

Ist wirklich der "Flächeninhalt" gemeint oder die "Fläche unter dem Graphen"

Zeig doch mal DEine Rechnungen

FRED

Bezug
        
Bezug
Flächeninhalt: Antwort
Status: (Antwort) fertig Status 
Datum: 14:51 Fr 10.10.2008
Autor: fred97

Wenn der Flächeninhalt gemeint war, so stimmt Dein Ergebnis

FRED

Bezug
        
Bezug
Flächeninhalt: nebenbei ...
Status: (Antwort) fertig Status 
Datum: 15:05 Fr 10.10.2008
Autor: Al-Chwarizmi

Ich kann das Resultat auch bestätigen.
Allerdings ist mir sehr aufgefallen, dass das Flächenelement
[mm] dS=\wurzel{2}*dx*dy [/mm] konstant ist und ich habe mich gefragt,
wie dies bei dieser Fläche möglich ist. Des Rätsels Lösung ist
einfach, wenn man sich klar macht, dass es sich um einen
auf die Spitze gestellten Kegel handelt. Alle seine Tangentialebenen
haben den Neigungswinkel  45°  gegenüber der  x-y-Ebene.
Deshalb ist der Flächeninhalt des betrachteten Ausschnitts:

          [mm] A_F=\bruch{A_B}{cos(45^{°})}=\bruch{1*2}{\bruch{1}{\wurzel{2}}}=2\wurzel{2} [/mm]

[winken]   Al


Bezug
                
Bezug
Flächeninhalt: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 15:13 Fr 10.10.2008
Autor: fred97

Nur der Vollständigkeit wegen: ich habe den Inhalt mit



[mm] \integral_{B}^{}{(1+(f_x)^2+(f_y)^2)^{1/2} d(x,y)} [/mm]

berechnet

FRED

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Integration"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de