www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Exp- und Log-Funktionen" - Flächeninhalt
Flächeninhalt < Exp- und Log-Fktn < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Exp- und Log-Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Flächeninhalt: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 14:59 So 06.12.2009
Autor: Elisabeth17

Aufgabe
Gegeben ist die Funktion f durch f(x)= x + [mm] e^{-x}. [/mm]
a) Untersuchen Sie das Schaubild auf Extrem- und Wendestellen sowie Asymptoten.
b) Das Schaubild von f, die Asymptote und die y-Achse begerenzen eine (ins Unendliche reichende9 Fläche. Untersuchen Sie, ob diese einen endlichen Flächeninhalt hat.

Hallo Matheforum!

Bin gerade am Rechnen dieser Aufgabe.
a) habe ich schon erledigt:
Extremstelle bei x=0 (und zwar ein Minimum M(0|1)).
keine Wendestellen

Keine senkrechte oder waagrechte Asymptoten, aber eine schiefe Asymptote (y=x).

Jetzt habe ich aber ein Problem beim Lösen der Teilaufgabe b):

Mein bisheriger "Rechenweg"/ meine Überlegungen sehen so aus:

[mm] \integral_{0}^{a}{(x+\bruch{e}{x})-x dx} [/mm] = [mm] \integral_{0}^{a}{\bruch{e}{x} dx} [/mm] = [e*ln(x)]b,0 = e*ln(b)-e*ln(0)

Jetzt ist es doch so, dass e*ln(0) keine Lösung hat. Wie behandle ich das Ganze dann?

Stünde dort etwas anderes, hätte ich geschrieben:
Für [mm] a->+\infty [/mm] strebt xy gegen blablabla …
bzw. hat xy keinen Grenzwert und damit hat die Fläche keinen endlichen Flächeninhalt.

Wie mache ich das aber mit e*ln(b)-e*ln(0) ?

Würde mich freuen, wenn mir jemand helfen könnte!

LG Eli

        
Bezug
Flächeninhalt: falsch umgeformt
Status: (Antwort) fertig Status 
Datum: 15:04 So 06.12.2009
Autor: Loddar

Hallo Elisabeth!


Du hast hier falsch umgeformt, da [mm] $e^{-x} [/mm] \ [mm] \red{\not=} [/mm] \ [mm] \bruch{e}{x}$ [/mm] !

Die Stammfunktion zu [mm] $e^{-x}$ [/mm] lautet [mm] $-e^{-x}$ [/mm] .


Gruß
Loddar


Bezug
                
Bezug
Flächeninhalt: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 15:25 So 06.12.2009
Autor: Elisabeth17

Hallo Loddar,

danke für die Hilfe!

Die schiefe Asymptote y=x ist ja dennoch richtig, oder?

Damit ist die Stammfunktion [mm] -e^{-a}+e^{0}= -e^{-a}+1 [/mm]

F+r [mm] a->+\infty [/mm] strebt [mm] -e^{-a}+1 [/mm] gegen 1.
Der Inhalt der gesuchten, ins Unendlich recihende Fläche ist damit 1.

Richtig?

LG Eli

Bezug
                        
Bezug
Flächeninhalt: richtig
Status: (Antwort) fertig Status 
Datum: 15:48 So 06.12.2009
Autor: Loddar

Hallo Eli!


[daumenhoch] Allet chic!


Gruß
Loddar


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Exp- und Log-Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de