www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Geraden und Ebenen" - Flächeninhalt Ebene
Flächeninhalt Ebene < Geraden und Ebenen < Lin. Algebra/Vektor < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Geraden und Ebenen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Flächeninhalt Ebene: Tipp
Status: (Frage) beantwortet Status 
Datum: 20:15 Di 15.02.2011
Autor: coucou

Aufgabe
Berechnen Sie den Flächeninhalt der Ebene ABC.

A(O/0/4)
B(6/0/6)
C(0/4/2)


Hallo!

Ich habe mir die Ebene in ein kartesisches Koordinatensystem gezeichnet und wollte jetzt den Flächeninhalt des Dreiecks berechnen.
Dafür habe ich mir überlegt, dass die Höhe von A auf die Seite BC geht. Sie ist natürlich senkrecht zu dieser Seite, also könnte man mit dem Normalenvektor arbeiten. Wie aber stelle ich jetzt eine Gleichung auf? Ich habe ja nur den Punkt A und die Gerade BC?

Vielen Dank im Voraus für Tipps und Ansätze!

LG,
coucou

        
Bezug
Flächeninhalt Ebene: Antwort
Status: (Antwort) fertig Status 
Datum: 20:36 Di 15.02.2011
Autor: kamaleonti

Hallo,

> Berechnen Sie den Flächeninhalt des Dreiecks ABC.
>  
> A(O/0/4),  B(6/0/6),  C(0/4/2)

>  Dafür habe ich mir überlegt, dass die Höhe von A auf
> die Seite BC geht. Sie ist natürlich senkrecht zu dieser
> Seite, also könnte man mit dem Normalenvektor arbeiten.
> Wie aber stelle ich jetzt eine Gleichung auf? Ich habe ja
> nur den Punkt A und die Gerade BC?

Berechne den Abstand von A zur Gerade BC. Dazu gibt es z. B. die folgende []Formel.
Dort ist auch erklärt, wie es ganz direkt geht.

Noch ein anderer Ansatz: Kennst du die Heronsformel zur Flächeninhaltsbestimmung von Dreiecken?

Seien a,b,c die Dreiecksseiten, [mm] s=\frac{a+b+c}{2} [/mm] der halbe Umfang. Dann gilt für den Flächeninhalt A:
[mm] A=\sqrt{s(s-a)(s-b)(s-c)} [/mm]
Die Dreiecksseitenlängen kannst du über den euklidischen Abstand bestimmen:
[mm] a=\overline{BC}=\|\vektor{0 \\ 0\\6}\cdot\vektor{0 \\ 4\\2}\|=\sqrt{12}. [/mm]
Am Ende kannst du das alles Einsetzen, aber das Vereinfachen wird wohl eher schwierig.

Gruß

Bezug
        
Bezug
Flächeninhalt Ebene: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 20:37 Di 15.02.2011
Autor: abakus

Hallo,
vermutlich kennst du die Flächenformel [mm] A=0.5*a*b*sin\gamma [/mm] ?
Die Seitenlängen von ABC lassen sich alle berechnen, und daraus erhältst du mit dem Kosinussatz einen der Innenwinkel (falls schon eingeführt, auch mit dem Skalarprodukt).
Gruß Abakus



Bezug
        
Bezug
Flächeninhalt Ebene: Antwort
Status: (Antwort) fertig Status 
Datum: 18:25 Mi 16.02.2011
Autor: weduwe

da die höhe senkrecht auf die seite steht, könntest du den höhenfußpunkt der höhe auf c  so berechnen:

[mm] (\vec{a}+\lambda\cdot(\vec{a}-\vec{b})-\vec{c})\cdot(\vec{a}-\vec{b})=0 [/mm]

dann geht einfach [mm] A=\frac{1}{2}c\cdot h_c [/mm]

eine alternative wäre das vektorprodukt

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Geraden und Ebenen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de