www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Ganzrationale Funktionen" - Flächeninhalt Näherungswert
Flächeninhalt Näherungswert < Ganzrationale Fktn < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Ganzrationale Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Flächeninhalt Näherungswert: Frage
Status: (Frage) beantwortet Status 
Datum: 17:51 Do 10.03.2005
Autor: MandyJ

Hallo, brauche Hilfe, komm einfach nicht weiter...

Die Funktion f(x)=4x² : x²+3, die positive x-Achse und die Gerade x=1 begrenzen eine Fläche mit dem Inhalt A. Einen Näherungswert A' für A erhält man, indem man die Funktion f(x) durch eine Parabel 4. Ordnung ersetzt. Diese Parabel soll symmetrisch zur y-Achse sein und den Graphen von f(x) im Punkt P (1/1) berühren. Bestimmen Sie die Gleichung dieser Parabel. Berechnen Sie A'.

Wegen der Symmetrie müsste die Gleichung irgendwie was mit f(x)=axhoch4 + cx² zu tun haben, oder?

Wäre wirklich dankbar für einen Hinweis.


        
Bezug
Flächeninhalt Näherungswert: Hinweise
Status: (Antwort) fertig Status 
Datum: 18:18 Do 10.03.2005
Autor: Loddar

Hallo Mandy!


> Wegen der Symmetrie müsste die Gleichung irgendwie was mit
> f(x)=axhoch4 + cx² zu tun haben, oder?

[daumenhoch] Diese Idee ist ganz gut ...

Wir haben also:

$f(x) \ = \ [mm] \bruch{4x^2}{x^2+3}$ [/mm]

sowie

$p(x) \ = \ [mm] ax^4 [/mm] + [mm] cx^2$ [/mm]

Um die Koeffizienten Deiner Näherungsparabel $p(x)$ zu ermitteln, müssen wir nun die Informationen aus der Aufgabenstellung filtern und verwerten.

Die Parabel [mm] $\blue{p(x)}$ [/mm] soll im Punkt [mm] $\blue{P \ ( \ 1 \ | \ 1 \ )}$ [/mm] die Funktion [mm] $\blue{f(x)}$ [/mm] berühren.


Info 1

$p(x)$ muß durch den Punkt $P$ gehen: $p(1) \ = \ 1$



Info 2

$p(x)$ soll $f(x)$ in $P$ berühren:
Das heißt, hier müssen beide Funktionskurven dieselbe Steigung haben:

$f'(1) \ = \ p'(x)$

Du mußt hier also die entsprechenden Ableitungen berechnen und dann den x-Wert $x \ = \ 1$ einsetzen.


Kommst Du mit diesen Hinweisen weiter?
Melde Dich doch nochmal mit Deinem Ergebnis ...


Grüße
Loddar


Bezug
                
Bezug
Flächeninhalt Näherungswert: Rückfrage
Status: (Frage) beantwortet Status 
Datum: 18:32 Do 10.03.2005
Autor: MandyJ

Hallo Loddar,
vielen, vielen Dank für Deine Hinweise!

Ich hab jetzt folgende Gleichung  p(x)= -0,25xhoch4 + 1,25x².

Aber wie soll ich da einen Flächeninhalt berechnen, wenn ich gar keine Grenzen vorgegeben habe?

Ach Mensch, manchmal ist Mathe echt zum verzweifeln..

Bezug
                        
Bezug
Flächeninhalt Näherungswert: Antwort
Status: (Antwort) fertig Status 
Datum: 18:49 Do 10.03.2005
Autor: Christian

Hallo!

Du hast doch von der eigentlichen Aufgabenstellung immer noch die Angaben: positive x-Achse und die Gerade x=1.
Weil deine Näherungsfunktion [mm]y=-\frac{1}{4}x^4+\frac{5}{4}x^2[/mm] in diesem Bereich positiv ist, ergibt das für deine Grenzen zum Integrieren dann x=0 und x=1.

Gruß,
Christian

Bezug
                                
Bezug
Flächeninhalt Näherungswert: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 18:55 Do 10.03.2005
Autor: Christian

PS.: Deine Näherungsfunktion sieht übrigens sehr gut aus. Das obere (rot) ist die eigentliche Funktion, die gesuchte Fläche ist blau eingezeichnet.

[Dateianhang nicht öffentlich]

Gruß,
Christian

Dateianhänge:
Anhang Nr. 1 (Typ: jpg) [nicht öffentlich]
Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Ganzrationale Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de