www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Vektoren" - Flächeninhalt eines Dreiecks
Flächeninhalt eines Dreiecks < Vektoren < Lin. Algebra/Vektor < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Vektoren"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Flächeninhalt eines Dreiecks: Ansatzsuche
Status: (Frage) beantwortet Status 
Datum: 08:45 Do 23.02.2012
Autor: Lewser

Aufgabe
Die Vektoren [mm] \vec{a} [/mm] und [mm] \vec{b} [/mm] schließen einen Winkel von 60° ein mit a=3 und b=6. Berechnen Sie den Flächeninhalt [mm] F=\bruch{1}{2}|\vec{A}\times\vec{B}| [/mm]  des Dreiecks, das von den Vektoren [mm] \vec{A}=\vec{a}-2\vec{b} [/mm] und [mm] \vec{B}=3\vec{a}+2\vec{b} [/mm] gebildet wird.
Hinweis: Erst symbolisch rechnen und erst dann Zahlenwerte einsetzen!

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

Ich kann mir vorstellen, wie die Aufgabe zu verstehen ist. Das Kreuzprodukt ist der Flächeninhalt des aufgespannten Parallelogramms, die Hälfte ergibt das gesuchte Dreieck.
Mit den Beträgen und dem Winkel kann ich auch das Produkt aus [mm] \vec{a} [/mm] und [mm] \vec{b} [/mm] berechnen (bei mir 9).
Dann habe ich versucht die Gleichung jeweils aufzulösen nach den Vektoren ... aber durch einen Vektor (der mir zudem unbekannt ist) zu teilen kam mir komisch vor.

Anderer Ansatz war einfach im Kreuzprodukt die Komponenten zu verwenden, was aber sehr unübersichtlich wurde und mir auch komisch vorkam, da ich ja die einzelnen Werte ebenfalls nicht kenne.

        
Bezug
Flächeninhalt eines Dreiecks: Antwort
Status: (Antwort) fertig Status 
Datum: 09:11 Do 23.02.2012
Autor: Diophant

Hallo,

ich will nicht zuviel verraten, sonst würde die fertige Lösung dastehen.

Ich nehme an, es ist

[mm] a=|\overrightarrow{a}| [/mm] bzw.

[mm] b=|\overrightarrow{b}| [/mm] ?

Nutze für diese Aufgabe folgende Eigenschaften des Kreuzproduktes:

i).
[mm] |\overrightarrow{a}\times\overrightarrow{b}|=|\overrightarrow{a}|*|\overrightarrow{b}|*sin\phi [/mm]

ii).
[mm] \overrightarrow{a}\times\overrightarrow{a}=\overrightarrow{0} [/mm]

iii).
Für das Kreuzprodukt und die Vektoraddition gelten:

- Linksdistributivgesetz:
[mm] \overrightarrow{a}\times{(\overrightarrow{b}+\overrightarrow{c})}=\overrightarrow{a}\times\overrightarrow{b}+\overrightarrow{a}\times\overrightarrow{c} [/mm]

- Rechtsdistributivgesetz:
[mm] (\overrightarrow{b}+\overrightarrow{c})\times\overrightarrow{a}=\overrightarrow{b}\times\overrightarrow{a}+\overrightarrow{c}\times\overrightarrow{a} [/mm]

Außerdem ist das Kreuzprodukt noch assoziativ und alternativ, letzteres werden wir hier auch noch benötigen.

> Dann habe ich versucht die Gleichung jeweils aufzulösen
> nach den Vektoren ... aber durch einen Vektor (der mir
> zudem unbekannt ist) zu teilen kam mir komisch vor.

Das ist auch keine gute Idee: keine der Multiplikationen der Vektoralgebra ist umkehrbar, es existiert also keinerlei Division durch einen Vektor.

Gruß, Diophant

Bezug
                
Bezug
Flächeninhalt eines Dreiecks: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 09:23 Do 23.02.2012
Autor: Lewser

Ich verstehe nicht ganz, wieso mir das Kreuzprodukt der "gegebenen" Vektoren weiterhilft. Setze ich einfach [mm] \vec{a} [/mm] und [mm] \vec{b} [/mm] in das Kreuzprodukt ein?
Und der Zusammenhang zu den Distributivgesetzen erschließt sich mir nicht ganz, da ich ja nur zwei Vektorenbeträge zur Verfügung habe.

Bezug
                        
Bezug
Flächeninhalt eines Dreiecks: Antwort
Status: (Antwort) fertig Status 
Datum: 09:32 Do 23.02.2012
Autor: Diophant

Hallo,

setze die Vektoren

[mm] \overrightarrow{A} [/mm]

und

[mm] \overrightarrow{B} [/mm]

in die Flächenformel ein und wende dann zunächst das Distributivgesetz an. Ich denke, dann wird dir der Sinn meines Tipps klar werden.

Mit den Vektoren [mm] \overrightarrow{a} [/mm] und [mm] \overrightarrow{b} [/mm] kannst du nicht rechnen, aus dem einfachen Grund, weil sie nicht gegeben sind. :-)

Gruß, Diophant



Bezug
                                
Bezug
Flächeninhalt eines Dreiecks: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 10:11 Do 23.02.2012
Autor: Lewser

Ich habe jetzt die Vektoren eingesetzt und das Distributivgesetz angewandt, was mich verwirrt hat war (und ist) die Tatsache, dass ich ja vier Klammern bekomme und mir war nicht klar, dass ich das Distributivgesetzt einfach so abwandeln darf. Dann habe ich die Skalare ausgeklammert und die Vektoren, die eine Fläche von Null ergeben gestrichen.
Bin damit auch auf die angegebene Lösung gekommen.
Nur zum Verständnis, ich darf aus:

[mm] (\vec{a}-2\vec{b})\times(3\vec{a}-2\vec{b}) [/mm]

diesen Ausdruck machen:

[mm] (\vec{a}\times3\vec{b})-(2\vec{b}\times3\vec{a})-(\vec{a}\times2\vec{b})+(2\vec{b}\times2\vec{a}) [/mm]

?

Das war mein Rechenweg und ich will ausschliessen, dass ich durch Zufall das richtige Ergebnis bekommen habe.


Bezug
                                        
Bezug
Flächeninhalt eines Dreiecks: Antwort
Status: (Antwort) fertig Status 
Datum: 10:27 Do 23.02.2012
Autor: Diophant

Hallo,

du hast a) falsch gerechnet und b) bist du noch nicht fertig. Ich habe in meiner Antrwort einen Denkfehler gemacht. Das

Alternativgesetz:

[mm] \overrightarrow{a}\times\overrightarrow{b}=-\overrightarrow{b}\times\overrightarrow{a} [/mm]

werden wir benötigen.

Also der richtige Ansatz lautet so:

[mm] F=\bruch{1}{2}*|(\overrightarrow{a}-2\overrightarrow{b})\times{(3\overrightarrow{a}+2\overrightarrow{b})}| [/mm]

[mm] =\bruch{1}{2}*|\overrightarrow{a}\times{3\overrightarrow{a}}+\overrightarrow{a}\times{2\overrightarrow{b}}-2\overrightarrow{b}\times{3\overrightarrow{a}}-2\overrightarrow{b}\times{2\overrightarrow{b}}| [/mm]

[mm] =\bruch{1}{2}*|2\overrightarrow{a}\times\overrightarrow{b}-6\overrightarrow{b}\times\overrightarrow{a}| [/mm]

[mm] =\bruch{1}{2}*|2\overrightarrow{a}\times\overrightarrow{b}+6\overrightarrow{a}\times\overrightarrow{b}| [/mm]

[mm] =\bruch{1}{2}*|8\overrightarrow{a}\times\overrightarrow{b}| [/mm]

[mm] =4*|\overrightarrow{a}\times\overrightarrow{b}| [/mm]

Den Rest bekommst du jetzt mit der Eigenschaft i) aus meinem ersten Beitrag. Sollte irgendetwas unklar sein, dann frage einfach nach.

Gruß, Diophant


Bezug
                                                
Bezug
Flächeninhalt eines Dreiecks: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 10:40 Do 23.02.2012
Autor: Lewser

Absolut nachvollziehbar, allerdings wundert mich, dass ich auf das richtige Ergebnis komme. Mit deiner Rechnung natürlich auch ... es wird wohl ein Zufall sein, da ich bei meinem Rechenweg das Alternativgesetzt nicht beachtet habe, was aber im Falle des Betrages nicht zu Fehlern geführt hat.
Vielen Dankbis hierhin, hat mir sehr geholfen!

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Vektoren"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de