www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Integralrechnung" - Flächeninhalt eines Integrals
Flächeninhalt eines Integrals < Integralrechnung < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Integralrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Flächeninhalt eines Integrals: Schnittstellenberechnung
Status: (Frage) beantwortet Status 
Datum: 20:34 Sa 17.11.2007
Autor: mia-sky

Aufgabe
Bestimme k [mm] \in \IR [/mm] so, dass die von den Graphen der Funktion f und g eingeschlossene Fläche den Inhalt A hat.

f(x) = [mm] x^{2}, [/mm] g(x)= [mm] -x^{2}+k [/mm]         , A=1

Wie genau berechnet man dafür die Schnittstellen?

f(x) - g(x) = h(x)
dann ist h(x) = [mm] x^{4} [/mm] + k       (?)

Also ich weiß zwar dass man für die Schnittstellen h(x) = 0 setzen muss, aber in dem Fall ergibt das ja keine Schnittstelle!?


Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Flächeninhalt eines Integrals: Antwort
Status: (Antwort) fertig Status 
Datum: 20:49 Sa 17.11.2007
Autor: hase-hh

moin!

die schnittstellen zweier funktonen berechnest du, indem du sie gleichsetzt...

also:

f(x) = g(x)

[mm] x^2 [/mm] = [mm] -x^2 [/mm] + k

[mm] 2x^2 [/mm] = k

[mm] x^2 [/mm] = [mm] \bruch{k}{2} [/mm]

[mm] x_{1,2} [/mm] = [mm] \pm \wurzel{\bruch{k}{2}} [/mm]

die beiden lösungen sind deine intervallgrenzen.

kommst du jetzt weiter?

gruss
wolfgang




Bezug
                
Bezug
Flächeninhalt eines Integrals: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 21:37 Sa 17.11.2007
Autor: mia-sky

Vielen, vielen Dank für die Antwort!

Ich habe mich übrigens geirrt, h(x) muss dann nämlich [mm] 2x^{2}+k [/mm] sein.

h(x) = [mm] 2x^{2}+k [/mm]

also

1 = [mm] \integral_{-2}^{4}{2x^{2}+k dx} [/mm]
   = ( [mm] \bruch{2}{3}\*\wurzel{\bruch{k}{2}}^3+k\*\wurzel{\bruch{k}{2}}) [/mm] - ( [mm] \bruch{2}{3}\*(-\wurzel{\bruch{k}{2}})^3+k\*(-\wurzel{\bruch{k}{2}})) [/mm]


Und da weiß ich leider schon nicht weiter. Wie kommt man von da auf k? Was kann man miteinander subtrahieren?


Bezug
                        
Bezug
Flächeninhalt eines Integrals: Antwort
Status: (Antwort) fertig Status 
Datum: 22:02 Sa 17.11.2007
Autor: M.Rex

Hallo.



> Vielen, vielen Dank für die Antwort!
>  
> Ich habe mich übrigens geirrt, h(x) muss dann nämlich
> [mm]2x^{2}+k[/mm] sein.
>  
> h(x) = [mm]2x^{2}+k[/mm]
>  
> also
>  
> 1 = [mm]\integral_{-2}^{4}{2x^{2}+k dx}[/mm]
>     = (
> [mm]\bruch{2}{3}\*\wurzel{\bruch{k}{2}}^3+k\*\wurzel{\bruch{k}{2}})[/mm]
> - (
> [mm]\bruch{2}{3}\*(-\wurzel{\bruch{k}{2}})^3+k\*(-\wurzel{\bruch{k}{2}}))[/mm]
>  
>
> Und da weiß ich leider schon nicht weiter. Wie kommt man
> von da auf k? Was kann man miteinander subtrahieren?
>  


Da steht ja:
[mm] 1=\integral_{-2}^{4}{2x^{2}+kdx} [/mm]
[mm] =(\bruch{2}{3}(\wurzel{\bruch{k}{2}})^3+k\wurzel{\bruch{k}{2}})-(\bruch{2}{3}\*(-\wurzel{\bruch{k}{2}})^3+k(-\wurzel{\bruch{k}{2}})) [/mm]

Wenn du jetzt bedenkst, das gilt:
[mm] (\wurzel{\bruch{k}{2}})^3=(\wurzel{\bruch{k}{2}})*(\wurzel{\bruch{k}{2}})*(\wurzel{\bruch{k}{2}})=\bruch{k}{2}(\wurzel{\bruch{k}{2}}) [/mm]
und [mm] (-\wurzel{\bruch{k}{2}})^3=\bruch{k}{2}(-\wurzel{\bruch{k}{2}}) [/mm]

kannst du den Term ein wenig zusammenfassen und dann [mm] (\wurzel{\bruch{k}{2}}) [/mm] ausklammern, so dass du dann einen relativ einfache Gleichung erhältst, mit der du dann k bestimmen kannst.

Also:
[mm] 1=(\bruch{2}{3}(\wurzel{\bruch{k}{2}})^3+k\wurzel{\bruch{k}{2}})-(\bruch{2}{3}\*(-\wurzel{\bruch{k}{2}})^3+k(-\wurzel{\bruch{k}{2}})) [/mm]
[mm] \gdw1=(\bruch{k}{3}(\wurzel{\bruch{k}{2}})+k\wurzel{\bruch{k}{2}})-(\bruch{k}{3}(-\wurzel{\bruch{k}{2}})+k(-\wurzel{\bruch{k}{2}})) [/mm]
[mm] \gdw1=((\bruch{k}{3}+k)(\wurzel{\bruch{k}{2}}))-((\bruch{k}{3}+k)(-\wurzel{\bruch{k}{2}})) [/mm]
[mm] \gdw1=((\bruch{k}{3}+k)+(\bruch{k}{3}+k)))((\wurzel{\bruch{k}{2}})) [/mm]
[mm] \gdw1=(2*(\bruch{4k}{3})(\wurzel{\bruch{k}{2}}) [/mm]
[mm] \gdw1=(\bruch{8k}{3})(\wurzel{\bruch{k}{2}}) [/mm]
[mm] \gdw\bruch{\wurzel{2}}{\wurzel{k}}=\bruch{8k}{3} [/mm]

Jetzt versuch mal alleine weiterzukommen

Marius


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Integralrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de