www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Reelle Analysis mehrerer Veränderlichen" - Flächeninhalt mit Cavalieri
Flächeninhalt mit Cavalieri < mehrere Veränderl. < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Reelle Analysis mehrerer Veränderlichen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Flächeninhalt mit Cavalieri: Tipp
Status: (Frage) beantwortet Status 
Datum: 01:28 Fr 03.06.2011
Autor: kaschina

Aufgabe
Skizzieren Sie jeweils die Menge [mm]B \subseteq \IR^2[/mm] bzw [mm] C \subseteq \IR^3[/mm] und berechnen Sie deren Flächeninhalt bzw deren Volumen. (Hinweis: Prinzip von Cavalieri).

[mm]B = \{(x,y) \in \IR^2: \bruch{1}{4}x^2- 1 \le y \le 2 - x \}[/mm]

Was ich bisher weiß:
Ich muss eine eindimensionale Menge  bilden, mit der ich durch die beiden entstandenen Funktionen - bzw hier eigentlich schon offensichtlich - die Integralsgrenzen bilde.
Für y also:
[mm]\integral_{\bruch{1}{4}x^2 -1}^{2 - x}[/mm]
Muss ich dann für das zweite Integral die beiden Grenzen nach x auflösen?
Und vor Allem:
Woraus besteht meine Integralsfunktion?
Ich habe zwar theoretisch ähnliche Aufgaben im Skript gefunden, wie man von den gegebenen Funktionen auf Grenzwerte kommt, ist im Prinzip auch klar, aber das Integral selber ist mir ein Rätsel...

Über einen Tipp wäre ich sehr dankbar!

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Flächeninhalt mit Cavalieri: Antwort
Status: (Antwort) fertig Status 
Datum: 04:41 Fr 03.06.2011
Autor: Al-Chwarizmi


> Skizzieren Sie jeweils die Menge [mm]B \subseteq \IR^2[/mm] bzw [mm]C \subseteq \IR^3[/mm]
> und berechnen Sie deren Flächeninhalt bzw deren Volumen.
> (Hinweis: Prinzip von Cavalieri).
>  [mm]B = \{(x,y) \in \IR^2: \bruch{1}{4}x^2- 1 \le y \le 2 - x \}[/mm]
>  
> Was ich bisher weiß:
> Ich muss eine eindimensionale Menge  bilden, mit der ich
> durch die beiden entstandenen Funktionen - bzw hier
> eigentlich schon offensichtlich - die Integralsgrenzen
> bilde.
>  Für y also:
> [mm]\integral_{\bruch{1}{4}x^2 -1}^{2 - x}[/mm]
>  Muss ich dann für
> das zweite Integral die beiden Grenzen nach x auflösen?
>  Und vor Allem:
> Woraus besteht meine Integralsfunktion?
>  Ich habe zwar theoretisch ähnliche Aufgaben im Skript
> gefunden, wie man von den gegebenen Funktionen auf
> Grenzwerte kommt, ist im Prinzip auch klar, aber das
> Integral selber ist mir ein Rätsel...
>  
> Über einen Tipp wäre ich sehr dankbar!


Hallo kaschina,

ich denke, dass das "ganz normal" gemacht werden
kann:

    [mm] \integral_{x_{links}}^{x_{rechts}}\left[(2-x)-\left(\bruch{1}{4}x^2- 1\right)\right]\,dx [/mm]

Man kann das durchaus als Anwendung des Prinzips
von Cavalieri sehen ! Aus dem ursprünglichen Segment
zwischen einer oberen geradlinigen und einer unteren
parabelförmigen Begrenzung macht man dabei ein
neues, flächengleiches Segment zwischen einem oben
liegenden Parabelbogen und der x-Achse.

LG    Al-Chw.


Bezug
                
Bezug
Flächeninhalt mit Cavalieri: Link
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 11:42 Fr 03.06.2011
Autor: Al-Chwarizmi

[]Prinzip von Cavalieri

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Reelle Analysis mehrerer Veränderlichen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de