www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Integration" - Flächeninhaltsberechnung
Flächeninhaltsberechnung < Integration < Funktionen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Integration"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Flächeninhaltsberechnung: Rückfrage
Status: (Frage) beantwortet Status 
Datum: 15:38 Do 02.07.2015
Autor: Schlumpf004

Aufgabe
Für [mm] x\le [/mm] 0 begrenzen die Funktionen f(x)= [mm] x^3 [/mm]   , g(x)= [mm] \bruch{1}{x} [/mm]  und h(x)= 4
im 3. Quadranten zwei verschiedene Flächen. Skizzieren Sie den Sachverhalt und berechnen Sie wahlweise den Inhalt einer dieser Flächen.

Hallo,

ich lade ein Bild hoch wo man sieht welche Fläche ich berechnet habe.
Habe die obere Fläche berechnet.

Mein Problem ist ich weiss nicht genau was man was wie minus was macht..
Ergebnis lautet : A= [mm] \integral_{-1}^{0}{x^3 - 1/x dx} [/mm] + [mm] \integral_{0}^{0,5}{4x - 1/x dx} [/mm]
= 0,94 FE

Habe das schon rausbekommen aber ich kann es einfach nicht nachvollziehen warum man 4x - 1/x macht ? Also warum würde es nicht gehen wenn ich [mm] x^3 [/mm] - 4x machen würde ?


LG

Dateianhänge:
Anhang Nr. 1 (Typ: png) [nicht öffentlich]
        
Bezug
Flächeninhaltsberechnung: Antwort
Status: (Antwort) fertig Status 
Datum: 16:10 Do 02.07.2015
Autor: Steffi21

Hallo

[Dateianhang nicht öffentlich]

dein Ziel ist also die hellblaue Fläche, berechnest Du

[mm] \integral_{-1}^{0}{x^3-4x dx} [/mm]

so bekommst Du die gelbe UND hellblaue Fläche, Dein Ziel ist ja nur die hellblaue Fläche, also ist die gelbe Fläche zu subtrahieren

[mm] \integral_{-1}^{0}{x^3-4x dx}-\integral_{-1}^{-0,5}{\bruch{1}{x}-4x dx} [/mm]

Steffi

Dateianhänge:
Anhang Nr. 1 (Typ: png) [nicht öffentlich]
Bezug
                
Bezug
Flächeninhaltsberechnung: Frage (reagiert)
Status: (Frage) reagiert/warte auf Reaktion Status 
Datum: 16:11 Do 02.07.2015
Autor: Schlumpf004

Was meinen sie mit hellblaue Fläche?

Bezug
                        
Bezug
Flächeninhaltsberechnung: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 16:11 Do 02.07.2015
Autor: Schlumpf004

Ok hab Anhang gesehen die war eben nicht da

Bezug
                
Bezug
Flächeninhaltsberechnung: Frage (reagiert)
Status: (Frage) reagiert/warte auf Reaktion Status 
Datum: 16:13 Do 02.07.2015
Autor: Schlumpf004

Ich kann i-wie die Skizze nicht sehen braucht man dafür word oder edel

Bezug
                
Bezug
Flächeninhaltsberechnung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 16:54 Do 02.07.2015
Autor: Schlumpf004

Ich glaube es muss 4x-1/x sein steht zumind. so in der Lösung.

Bezug
                        
Bezug
Flächeninhaltsberechnung: Antwort
Status: (Antwort) fertig Status 
Datum: 18:11 Do 02.07.2015
Autor: chrisno

Nimm die Formel für den Fkächeinhalt zwischen zwei Funktinsgraphen. Stell danach fest, dass Steffi21 genau das hingeschrieben hat. Rechne nun das Integral aus.

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Integration"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de