www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Geraden und Ebenen" - Flugbahn
Flugbahn < Geraden und Ebenen < Lin. Algebra/Vektor < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Geraden und Ebenen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Flugbahn: Korrektur
Status: (Frage) beantwortet Status 
Datum: 09:59 So 19.10.2014
Autor: Lucas95

Aufgabe
Ein Flugzeug steuert auf die Cheops-Pyramide zu. Auf dem Radarschirm im Kontrollpunkt ist die Flugbahn durch die abgebildeten Punkte F1(56; -44; 15) und F2(48; -36; 14) erkennbar. Die Eckpunkte der Cheops-Pyramide lauten:
A(0; -16; 0) B(16; 0; 0) C(0; 16; 0) D(-16;0;0) und S(0; 0; 12)
Kollidiert das Flugzeug bei gleichbleibenden Kurs mit der Cheops-Pyramide?

Liebe community,
wieder mal eine sehr interessante Aufgabe. Ich habe die Aufgabe gelöst, so wie ich denke, dass es Sinn macht und eventuell auch nicht ganz falsch ist. Vielleicht könntet ihr nochmal drüber schauen (:

Also, als erstes habe ich die Geradengleichung des Flugzeugs aufgestellt, anhand von F1(=Ortsvektor) und F2(F1F2= als RIchtungsvektor)
--> g(x)=[56, -44, 15]+t*[-8, 8, -1].
Danach habe ich eine Zeichnung der x-y-Ebene erstellt und festgestellt, dass das Flugzeug eventuell mit der Pyramidenfläche ABS kollidieren könnte.
Somit habe ich die Ebenengleichung dieser Fläche ABS aufgestellt mit Ortsvektor A und AB und AS als Spannvektoren
-->e(x)=[0, -16, 0]+s*[16, 16, 0]+r*[0, 16, 12]
So und jetzt habe ich mir folgendes gedacht: Falls das Flugzeug mit der Pyramide kollidieren sollte, müsste der gemeinsame Schnittpunkt bzw. Durchstoßpunkt der Geraden in folgenden Bereichen liegen:
0<x<16
-16<y<0
0<z<12
Außerdem müssen r,s,t>0 sein und die Summe aus s und r nicht größer als eins. Somit habe ich Geraden- und Ebenengleichung gleichgesetzt. Daraus ergab sich dann:
r= 3/4 s=1/2 und t=6 --> somit steht schon fest, der Punkt liegt nicht im Dreieck ABS, da s+r=5/4>1 ist.
Ich habe dann g(6) gerechnet, also für t in der Geradengleichung 6 eingesetzt und erhalte folgenden Schnittpunkt S[8; 4; 9]. Der Orstverktor S[8; 4; 9] liegt nicht im definierten Bereich der Seitenfläche ABS --> Das Flugzeug kollidiert nicht mit der Pyramide.

Ich freue mich über Antworten, einen schönen Sonntag! (:

        
Bezug
Flugbahn: Antwort
Status: (Antwort) fertig Status 
Datum: 10:23 So 19.10.2014
Autor: M.Rex

Hallo Lucas

> Ein Flugzeug steuert auf die Cheops-Pyramide zu. Auf dem
> Radarschirm im Kontrollpunkt ist die Flugbahn durch die
> abgebildeten Punkte F1(56; -44; 15) und F2(48; -36; 14)
> erkennbar. Die Eckpunkte der Cheops-Pyramide lauten:
> A(0; -16; 0) B(16; 0; 0) C(0; 16; 0) D(-16;0;0) und S(0;
> 0; 12)
> Kollidiert das Flugzeug bei gleichbleibenden Kurs mit der
> Cheops-Pyramide?
> Liebe community,
> wieder mal eine sehr interessante Aufgabe. Ich habe die
> Aufgabe gelöst, so wie ich denke, dass es Sinn macht und
> eventuell auch nicht ganz falsch ist. Vielleicht könntet
> ihr nochmal drüber schauen (:

>

> Also, als erstes habe ich die Geradengleichung des
> Flugzeugs aufgestellt, anhand von F1(=Ortsvektor) und
> F2(F1F2= als RIchtungsvektor)
> --> g(x)=[56, -44, 15]+t*[-8, 8, -1].
> Danach habe ich eine Zeichnung der x-y-Ebene erstellt und
> festgestellt, dass das Flugzeug eventuell mit der
> Pyramidenfläche ABS kollidieren könnte.
> Somit habe ich die Ebenengleichung dieser Fläche ABS
> aufgestellt mit Ortsvektor A und AB und AS als
> Spannvektoren
> -->e(x)=[0, -16, 0]+s*[16, 16, 0]+r*[0, 16, 12]
> So und jetzt habe ich mir folgendes gedacht: Falls das
> Flugzeug mit der Pyramide kollidieren sollte, müsste der
> gemeinsame Schnittpunkt bzw. Durchstoßpunkt der Geraden in
> folgenden Bereichen liegen:
> 0<x<16
> -16<y<0
> 0<z<12

So ist es

> Außerdem müssen r,s,t>0 sein und die Summe aus s und r
> nicht größer als eins.

Auch das stimmt

> Somit habe ich Geraden- und
> Ebenengleichung gleichgesetzt. Daraus ergab sich dann:
> r= 3/4 s=1/2 und t=6 --> somit steht schon fest, der Punkt
> liegt nicht im Dreieck ABS, da s+r=5/4>1 ist.
> Ich habe dann g(6) gerechnet, also für t in der
> Geradengleichung 6 eingesetzt und erhalte folgenden
> Schnittpunkt S[8; 4; 9]. Der Orstverktor S[8; 4; 9] liegt
> nicht im definierten Bereich der Seitenfläche ABS --> Das
> Flugzeug kollidiert nicht mit der Pyramide.


Deine Rechenwege sehen sehr gut aus, die Werte habe ich jetzt aber nicht konkret nachgerechnet. Aber die "glatten" Ergebnisse deuten darauf hin, dass du richtig gerechnet hast.


>

> Ich freue mich über Antworten, einen schönen Sonntag! (:

Marius
[][Externes Bild http:///ff.duckduckgo.com/favicon.ico][][][Externes Bild http:///www.google.com/favicon.ico][]%3D%3D

Bezug
                
Bezug
Flugbahn: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 10:39 So 19.10.2014
Autor: Lucas95

Dankeschön! (:

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Geraden und Ebenen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de