Fluiddynamik / ODE < Sonstiges < Hochschule < Mathe < Vorhilfe
|
Aufgabe | Sketch the streamlines of the flow [mm] $\mathbf{u} [/mm] = [mm] x\mathbf{i} [/mm] − [mm] y\mathbf{j}. [/mm] Find the position $(x(t), y(t))$ of a particle moving in the flow that starts at [mm] $(x_0, y_0)$ [/mm] when $t = 0$. If we assume that [mm] $y_0 [/mm] > [mm] x_0 [/mm] > 0$, how long does it take to get to [mm] $(y_0,x_0)$? [/mm] |
hi
ich hab leider keine Ahnung in welches Forum das am besten passt - ich hoffe einfach es findet jemand.
zu teil 1: die Stromlinien habe ich berechnet und geplottet, sollte laut maple auch stimmen. Hier nur der Vollständigkeit halber:
Streamlines
[mm] $$\frac{dx}{x} [/mm] = [mm] -\frac{dy}{y} \Leftrightarrow \int \frac{1}{x} [/mm] dx = [mm] -\int \frac{1}{y} [/mm] dy [mm] \Leftrightarrow \ln\abs{x} [/mm] = [mm] -\ln \abs{y} [/mm] + C [mm] \Leftrightarrow \ln\abs{x} [/mm] + [mm] \ln\abs{y} [/mm] = C [mm] \Leftrightarrow \ln\abs{xy} [/mm] = C
[mm] \Rightarrow e^{\ln xy} [/mm] = [mm] e^C \Leftrightarrow [/mm] xy = C'
[mm] \Rightarrow y=\frac{C'}{x}$$
[/mm]
ja, und dann gehen die Probleme los... ich denke, der zweite teil KÖNNTE noch stimmen, hier meine idee:
[mm] $\frac{dx}{dt} [/mm] = [mm] u_x;~~\frac{dy}{dt} [/mm] = [mm] u_y$
[/mm]
[mm] $$\frac{dx}{dt} [/mm] = [mm] \dot [/mm] x = x [mm] \quad \Rightarrow [/mm] x(t) = xt + A; [mm] \quad \frac{dy}{dt} [/mm] = [mm] \dot [/mm] y = -y [mm] \quad \Rightarrow [/mm] y(t) = -yt + B$$
[mm] $\Rightarrow [/mm] t=0: x(0) = A = [mm] x_0; [/mm] y(0) = B = [mm] y_0 \quad \Rightarrow [/mm] x(t) = [mm] xt+x_0; \quad [/mm] y(t) = -yt + [mm] y_0$
[/mm]
Position of particle that starts at [mm] $(x_0, y_0)$ [/mm] when $t=0$: [mm] $(xt+x_0, -yt+y_0)$
[/mm]
beim dritten teil der frage weiß ich dann nicht mehr wirklich weiter. meine gedanken:
-$t=0: [mm] (x_0, y_0); \quad [/mm] t=?: [mm] (y_0, x_0)~~ \text{wobei} ~~y_0 [/mm] = [mm] xt+x_0, x_0 [/mm] = [mm] -yt+y_0$
[/mm]
- irgendwie voneineander abziehen, aber ehrlich gesagt komme ich da einfach auf keinen grünen Zweig.
ich hoffe sehr, dass mir jemand weiterhelfen kann.
vielen dank schonmal!
gruß GB
|
|
|
|
Status: |
(Antwort) fertig | Datum: | 20:50 Mo 22.03.2010 | Autor: | rainerS |
Hallo!
> Sketch the streamlines of the flow [mm]$\mathbf{u}[/mm] =
> [mm]x\mathbf{i}[/mm] − [mm]y\mathbf{j}.[/mm] Find the position $(x(t),
> y(t))$ of a particle moving in the flow that starts at
> [mm]$(x_0, y_0)$[/mm] when $t = 0$. If we assume that [mm]$y_0[/mm] > [mm]x_0[/mm] >
> 0$, how long does it take to get to [mm]$(y_0,x_0)$?[/mm]
> hi
> ich hab leider keine Ahnung in welches Forum das am besten
> passt - ich hoffe einfach es findet jemand.
>
> zu teil 1: die Stromlinien habe ich berechnet und
> geplottet, sollte laut maple auch stimmen. Hier nur der
> Vollständigkeit halber:
>
> Streamlines
> [mm] \frac{dx}{x} = -\frac{dy}{y} \Leftrightarrow \int \frac{1}{x} dx = -\int \frac{1}{y} dy \Leftrightarrow \ln\abs{x} = -\ln \abs{y} + C \Leftrightarrow \ln\abs{x} + \ln\abs{y} = C \Leftrightarrow \ln\abs{xy} = C[/mm]
> [mm]\Rightarrow e^{\ln xy} = e^C \Leftrightarrowxy = C'[/mm]
> [mm]\Rightarrow y=\frac{C'}{x}[/mm]
> ja, und dann gehen die Probleme los... ich denke, der
> zweite teil KÖNNTE noch stimmen, hier meine idee:
> [mm]\frac{dx}{dt} = u_x;~~\frac{dy}{dt} = u_y[/mm]
> [mm]\frac{dx}{dt} = \dot x = x \quad \Rightarrow x(t) = xt + A; \quad \frac{dy}{dt} = \dot y = -y \quad \Rightarrow y(t) = -yt + B[/mm]
Umm, das ist Unsinn, du kannst doch nicht links [mm] $\dot [/mm] x$ nach der Zeit integrieren und rechts $x$ als Konstante behandeln:
[mm]\frac{dx}{dt} = \dot x = x \implies \bruch{dx}{x} = dt \implies \ln x = t+ C_1 \implies x = C'_1 e^t[/mm]
Analog: [mm] \ln y = -t + C_2 \implies y = C'_2 e^{-t}[/mm]
Und wunderbarerweise kommt heraus, das die Bewegung eines Teilchens den Stromlinien folgt.
Also kannst du ganz entweder einfach mit $y*x =C' $ rechnen und $C'$ aus der Anfangsbedingung [mm] $(x(t),y(t))\Bigr|_{t=0} [/mm] = [mm] (x_0,y_0)$ [/mm] bestimmen.
Oder aber du bestimmst die Konstanten $C'_1$ und $C'_2$ aus dieser Anfangsbedingung und setzt direkt ein.
Viele Grüße
Rainer
|
|
|
|
|
Particular Particle:
[mm] $\frac{dx}{dt} [/mm] = [mm] u_x;~~\frac{dy}{dt} [/mm] = [mm] u_y$
[/mm]
[mm] $$\frac{dx}{dt} [/mm] = [mm] \dot [/mm] x = x [mm] \quad \Rightarrow\frac{dx}{x} [/mm] = dt [mm] \Rightarrow \ln [/mm] x = t + [mm] C_1 \Rightarrow [/mm] x = [mm] C_1'e^t$$
[/mm]
[mm] $$\frac{dy}{dt} [/mm] = [mm] \dot [/mm] y = -y [mm] \quad \Rightarrow\frac{dy}{y} [/mm] = -dt [mm] \Rightarrow \ln [/mm] y = -t + [mm] C_2 \Rightarrow [/mm] y = [mm] C_2'e^{-t}$$
[/mm]
[mm] $\Rightarrow [/mm] t=0: x(0) = [mm] C_1'\cdot e^0 \Rightarrow C_1' [/mm] = [mm] x_0; \quad [/mm] y(0) = [mm] C_2' \cdot e^{-0} \Rightarrow C_2' [/mm] = [mm] y_0$
[/mm]
[mm] $$\Rightarrow [/mm] x(t) = [mm] x_0\cdot e^t; \quad [/mm] y(t) = [mm] y_0 \cdot e^{-t}$$
[/mm]
Position of particle that starts at [mm] $(x_0, y_0)$ [/mm] when $t=0$: [mm] $(x_0e^t, y_0e^{-t})$
[/mm]
Time to get to [mm] $(y_0, x_0)$:\\
[/mm]
[mm] $$y_0 [/mm] = [mm] x_0 \cdot e^t \Rightarrow e^t [/mm] = [mm] \frac{y_0}{x_0} \Rightarrow [/mm] t = [mm] \ln \frac{y_0}{x_0}$$
[/mm]
korrekt?
liebe grüße, gb
|
|
|
|