www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Reelle Analysis mehrerer Veränderlichen" - Fluss von Vektorfeld
Fluss von Vektorfeld < mehrere Veränderl. < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Reelle Analysis mehrerer Veränderlichen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Fluss von Vektorfeld: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 13:58 So 31.01.2010
Autor: Vuffi-Raa

Aufgabe
In einem Wasser mit konstanter Strömungsgeschwindigkeit [mm]v(x, y, z) = (2, 0, 0)[/mm] sei ein Netz aufgehängt, dessen Form durch die folgende Abbildung gegeben ist:
[mm][0, 3] \times [0, 2\pi] \ni (u, v) \mapsto (u - tanh(u), \bruch{cos(v)}{cosh(u)}, \bruch{sin(v)}{cosh(u)}) \in \IR^{3}[/mm].

Berechnen Sie den Gesamtfluß pro Zeiteinheit des Wassers durch das Netz.

So, die Aufgabe sollte eigentlich nicht das große Problem sein, trotzdem verzweifel ich schon seit 2 Stunden dran.

Sei F unser Netz mit Darstellung p. Weiter sei [mm]M := [0,3] \times [0,2\pi][/mm] und das Vektorfeld nennen wir um Verwechslungen zu vermeiden g.

Dann ist also der Fluss:

[mm]\integral_{F}{}{ do} = \integral_{M}{}{ * \left|n(p(u,v))\right| d(u,v)}[/mm]

Wobei [mm]n(p(u,v)) = (B_{1}(u,v), B_{2}(u,v), B_{3}(u,v))[/mm] das Normalenfeld ist und [mm]B_{j}(u,v) = (-1)^{j+3} * det (S_{j})[/mm] und [mm]S_{j} = p'(u,v)[/mm] ohne die j-te Spalte.

Ich hab nun zunächst für p'(u,v) folgendes raus:

[mm]p'(u,v) = \pmat{ tanh^2(u) & 0 \\ -cos(v) * \bruch{sinh(u)}{cosh^2(u)} & - \bruch{sin(v)}{cosh(u)} \\ -sin(v) * \bruch{sinh(u)}{cosh^2(u)} & \bruch{cos(v)}{cosh(u)}}[/mm]

Wenn ich nun weiter rechne, erhalte ich:

[mm] B_1(u,v) = - \bruch{sinh(u)}{cosh^3(u)} B_2(u,v) = - cos(v) * \bruch{sinh^2(u)}{cosh^3(u)} B_3(u,v) = - sin(v) * \bruch{sinh^2(u)}{cosh^3(u)} [/mm]

Und dann folgt [mm]\left|n(p(u,v))\right| = \bruch{sinh(u)}{cosh^2(u)}[/mm].

Wenn ich das alles nun in meine Formel einsetze, erhalte ich folgendes:

[mm]\integral_{F}{}{ do} = \integral_{M}{}{ * \left|n(p(u,v))\right| d(u,v)} = \integral_{M}{}{<(2,0,0), (B_1,B_2,B_3)> * \bruch{sinh(u)}{cosh^2(u)} d(u,v)} = \integral_{M}{}{-2 * \bruch{sinh(u)}{cosh^3(u)} * \bruch{sinh(u)}{cosh^2(u)} d(u,v)} = \integral_{M}{}{-2 * \bruch{sinh^2(u)}{cosh^5(u)} d(u,v)} [/mm]

So und da liegt nun mein Problem. Wenn ich jetzt dieses Integral mittels Fubini lösen will, dann is das Integrieren nach v natürlich kein Problem, aber das Integrieren nach u. Ich hab mal Maple rechnen lassen und da kommt ein riesiger Term raus, bei dem ich mir einfach nicht vorstellen kann, dass das das Ergebnis ist.
Deshalb meine Frage: Sieht hier irgendjemand einen Rechenfehler oder hab ich gar systematisch was falsch gemacht? Ich find nämlich einfach den Fehler nicht, falls es ihn denn gibt.
Ausführlichere Rechenschritte kann ich bei Bedarf gerne nachliefern.

        
Bezug
Fluss von Vektorfeld: Antwort
Status: (Antwort) fertig Status 
Datum: 17:46 So 31.01.2010
Autor: MathePower

Hallo Vuffi-Raa,

> In einem Wasser mit konstanter Strömungsgeschwindigkeit
> [mm]v(x, y, z) = (2, 0, 0)[/mm] sei ein Netz aufgehängt, dessen
> Form durch die folgende Abbildung gegeben ist:
>  [mm][0, 3] \times [0, 2\pi] \ni (u, v) \mapsto (u - tanh(u), \bruch{cos(v)}{cosh(u)}, \bruch{sin(v)}{cosh(u)}) \in \IR^{3}[/mm].
>  
> Berechnen Sie den Gesamtfluß pro Zeiteinheit des Wassers
> durch das Netz.
>  So, die Aufgabe sollte eigentlich nicht das große Problem
> sein, trotzdem verzweifel ich schon seit 2 Stunden dran.
>  
> Sei F unser Netz mit Darstellung p. Weiter sei [mm]M := [0,3] \times [0,2\pi][/mm]
> und das Vektorfeld nennen wir um Verwechslungen zu
> vermeiden g.
>  
> Dann ist also der Fluss:
>  
> [mm]\integral_{F}{}{ do} = \integral_{M}{}{ * \left|n(p(u,v))\right| d(u,v)}[/mm]


Die Gleichung stimmt nicht ganz.

Es ist [mm]do \ = \vmat{p_{u} \times p_{v}} \ d\left(u,v\right)[/mm]

Und [mm]n= \bruch{1}{\vmat{p_{u} \times p_{v}}}*\left(p_{u} \times p_{v}\right)[/mm]

Dann ergibt sich:

[mm]\integral_{F}{}{ do} = \integral_{M}{}{ d(u,v)}[/mm]


>
> Wobei [mm]n(p(u,v)) = (B_{1}(u,v), B_{2}(u,v), B_{3}(u,v))[/mm] das
> Normalenfeld ist und [mm]B_{j}(u,v) = (-1)^{j+3} * det (S_{j})[/mm]
> und [mm]S_{j} = p'(u,v)[/mm] ohne die j-te Spalte.
>  
> Ich hab nun zunächst für p'(u,v) folgendes raus:
>  
> [mm]p'(u,v) = \pmat{ tanh^2(u) & 0 \\ -cos(v) * \bruch{sinh(u)}{cosh^2(u)} & - \bruch{sin(v)}{cosh(u)} \\ -sin(v) * \bruch{sinh(u)}{cosh^2(u)} & \bruch{cos(v)}{cosh(u)}}[/mm]
>  
> Wenn ich nun weiter rechne, erhalte ich:
>
> [mm] B_1(u,v) = - \bruch{sinh(u)}{cosh^3(u)} B_2(u,v) = - cos(v) * \bruch{sinh^2(u)}{cosh^3(u)} B_3(u,v) = - sin(v) * \bruch{sinh^2(u)}{cosh^3(u)} [/mm]
>  
> Und dann folgt [mm]\left|n(p(u,v))\right| = \bruch{sinh(u)}{cosh^2(u)}[/mm].
>  
> Wenn ich das alles nun in meine Formel einsetze, erhalte
> ich folgendes:
>  
> [mm]\integral_{F}{}{ do} = \integral_{M}{}{ * \left|n(p(u,v))\right| d(u,v)} = \integral_{M}{}{<(2,0,0), (B_1,B_2,B_3)> * \bruch{sinh(u)}{cosh^2(u)} d(u,v)} = \integral_{M}{}{-2 * \bruch{sinh(u)}{cosh^3(u)} * \bruch{sinh(u)}{cosh^2(u)} d(u,v)} = \integral_{M}{}{-2 * \bruch{sinh^2(u)}{cosh^5(u)} d(u,v)}[/mm]
>
> So und da liegt nun mein Problem. Wenn ich jetzt dieses
> Integral mittels Fubini lösen will, dann is das
> Integrieren nach v natürlich kein Problem, aber das
> Integrieren nach u. Ich hab mal Maple rechnen lassen und da
> kommt ein riesiger Term raus, bei dem ich mir einfach nicht
> vorstellen kann, dass das das Ergebnis ist.
>  Deshalb meine Frage: Sieht hier irgendjemand einen
> Rechenfehler oder hab ich gar systematisch was falsch
> gemacht? Ich find nämlich einfach den Fehler nicht, falls
> es ihn denn gibt.
> Ausführlichere Rechenschritte kann ich bei Bedarf gerne
> nachliefern.


In dem resultierenden Integral ist demmach der Betrag
Deines errechneten Normalenvektors zu viel.

Daher lautet das zu berechnende Integral:


[mm]\integral_{F}{}{ do} = \integral_{M}{}{ * d(u,v)} [/mm]

[mm]= \integral_{M}{}{<(2,0,0), (B_1,B_2,B_3)> d(u,v)} = \integral_{M}{}{-2 * \bruch{sinh(u)}{cosh^3(u)} d(u,v)}[/mm]


Gruss
MathePower

Bezug
                
Bezug
Fluss von Vektorfeld: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 12:34 Di 02.02.2010
Autor: Vuffi-Raa

Ah, ich bin mit Normalenvektor und Normaleneinheitsvektor durcheinander gekommen.

Dankeschön für die Hilfe, jetzt ist alles klar! =)

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Reelle Analysis mehrerer Veränderlichen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de