www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Reelle Analysis mehrerer Veränderlichen" - Flussintegral
Flussintegral < mehrere Veränderl. < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Reelle Analysis mehrerer Veränderlichen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Flussintegral: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 18:07 So 18.11.2012
Autor: mart1n

Aufgabe
Berechnen Sie das Flussintegral über die Kugel:
[mm] x^2+y^2+z^2=4 [/mm] mit z [mm] \varepsilon [\wurzel{3},2] [/mm]

Hallo zusammen,

ich habe folgendes Problem:
Wir sollen das Flussintegral durch eine Kugelfläche bestimmen. Hierzu wollte ich den Satz von Gauss verwenden.

Die Divergenz ist hierbei: div(f)=4z

Zunächst habe die Berechnung mit Kugelkoordinaten durchgeführt. Mit der Funktionsdeterminante [mm] r^{2}*Sin(b) [/mm] und der Substitution z=r*Cos(b) komme ich auf ein Integral von:
[mm] \int _{\sqrt{3}}^2\int _0^{2\pi }\int _0^{\frac{\pi }{6}}4*r^3*\text{Cos}[b]*\text{Sin}[b] [/mm] db do dr = [mm] \frac{7 \pi }{4} [/mm]

Um meine Rechnung zu Überprüfen habe ich das ganze nochmal im xy-System durchgerechnet mit folgednem Ergebnis:
[mm] \int _{\sqrt{3}}^2\int _{-\sqrt{4-z^2}}^{\sqrt{4-z^2}}\int _{-\sqrt{4-y^2-z^2}}^{\sqrt{4-y^2-z^2}}4*z [/mm] dx dy dz = [mm] \pi [/mm]

Sieht jemand von euch meinen Fehler.

Schonmal danke im Vorraus,
mart1n

        
Bezug
Flussintegral: Antwort
Status: (Antwort) fertig Status 
Datum: 09:29 Di 20.11.2012
Autor: notinX

Hallo,

> Berechnen Sie das Flussintegral über die Kugel:
>  [mm]x^2+y^2+z^2=4[/mm] mit z [mm]\varepsilon [\wurzel{3},2][/mm]
>  Hallo
> zusammen,
>  
> ich habe folgendes Problem:
>  Wir sollen das Flussintegral durch eine Kugelfläche
> bestimmen. Hierzu wollte ich den Satz von Gauss verwenden.
>
> Die Divergenz ist hierbei: div(f)=4z

wie sieht denn f aus?

>  
> Zunächst habe die Berechnung mit Kugelkoordinaten
> durchgeführt. Mit der Funktionsdeterminante [mm]r^{2}*Sin(b)[/mm]
> und der Substitution z=r*Cos(b) komme ich auf ein Integral

Üblichierweise werden Kugelkoordinaten durch [mm] $(r\,\theta,\varphi)$ [/mm] beschrieben

> von:
>  [mm]\int _{\sqrt{3}}^2\int _0^{2\pi }\int _0^{\frac{\pi }{6}}4*r^3*\text{Cos}[b]*\text{Sin}[b][/mm] [/b][/b][/mm]
> [mm][b][b]db do dr = [mm]\frac{7 \pi }{4}[/mm][/b][/b][/mm]
> [mm][b][b] [/b][/b][/mm]

Wie kommst Du auf diese Grenzen? Du willst das Volumen berechnen, also muss r von 0 bis 2 gehen. Deine z-Komponente geht von 0 bis 0,5 - in der Aufgabenstellung steht was anderes.

> [mm][b][b]Um meine Rechnung zu Überprüfen habe ich das ganze [/b][/b][/mm]
> [mm][b][b]nochmal im xy-System durchgerechnet mit folgednem [/b][/b][/mm]
> [mm][b][b]Ergebnis:[/b][/b][/mm]
> [mm][b][b] [mm]\int _{\sqrt{3}}^2\int _{-\sqrt{4-z^2}}^{\sqrt{4-z^2}}\int _{-\sqrt{4-y^2-z^2}}^{\sqrt{4-y^2-z^2}}4*z[/mm] [/b][/b][/mm]
> [mm][b][b]dx dy dz = [mm]\pi[/mm][/b][/b][/mm]
> [mm][b][b] [/b][/b][/mm]
> [mm][b][b]Sieht jemand von euch meinen Fehler.[/b][/b][/mm]
> [mm][b][b] [/b][/b][/mm]
> [mm][b][b]Schonmal danke im Vorraus,[/b][/b][/mm]
> [mm][b][b] mart1n [/b][/b][/mm]

Gruß,

notinX

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Reelle Analysis mehrerer Veränderlichen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de