www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Folgen und Reihen" - Folge monoton fallend
Folge monoton fallend < Folgen und Reihen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Folge monoton fallend: Ablesen aus Rechnung - Wie?
Status: (Frage) beantwortet Status 
Datum: 13:28 Fr 29.12.2006
Autor: Phoney

Eingabefehler: "{" und "}" müssen immer paarweise auftreten, es wurde aber ein Teil ohne Entsprechung gefunden (siehe rote Markierung)

Hallo.

Zum Beweis das \sum_{n}a_n absolut konvergiert, falls \alpha < 1 mit $\alpha :=lim sup_{\alpha\rightarrow \infty} \wurzel[n]{|a_n|}$

Die ersten paar Zeilen haben wir in der Vorlesung so gemacht, dass...

q\in (\alpha,1) und $\varepsilon := q-\alpha >0$

$\alpha=lim sup\wurzel[n]{|a_n|}=inf_{n \ge m}} [sup_{k \ge n} \wurzel[k]{|a_n|}$

(Mal abgesehen davon, dass ich hier nicht weiss, waurm da auf einmal n größer gleich m steht und die folge a_n bleibt und nicht a_k??)

$\sigma_{n}:=[sup_{k \ge n} \wurzel[k]{|a_n|}$

Wir haben hieraus geschlussfolgert, dass die Folge (\sigma_{n})_n monoton fallend ist.

??
Wieso das denn? Also Wurzelfunktionen sind doch immer monoton steigend. Jetzt haben wir eine Reihe und das Supremum davon - aber wie kann ich nachweisen, dass das monoton fallend ist?

Es muss vermutlich gelten a_n > a_{n+1}.

Aber ein Beweis mit Supremum fällt mir nicht ein.

Grüße
Johann



        
Bezug
Folge monoton fallend: Antwort
Status: (Antwort) fertig Status 
Datum: 06:53 So 31.12.2006
Autor: MatthiasKr

Hallo,

> Hallo.
>  
> Zum Beweis das [mm]\sum_{n}a_n[/mm] absolut konvergiert, falls
> [mm]\alpha[/mm] < 1 mit [mm]\alpha :=lim sup_{\alpha\rightarrow \infty} \wurzel[n]{|a_n|}[/mm]
>  
> Die ersten paar Zeilen haben wir in der Vorlesung so
> gemacht, dass...
>
> [mm]q\in (\alpha,1)[/mm] und [mm]\varepsilon := q-\alpha >0[/mm]
>  
> [mm]\alpha=lim sup\wurzel[n]{|a_n|}=inf_{n \ge m}} [sup_{k \ge n} \wurzel[k]{|a_n|}[/mm]
>  
> (Mal abgesehen davon, dass ich hier nicht weiss, waurm da
> auf einmal n größer gleich m steht und die folge [mm]a_n[/mm] bleibt
> und nicht [mm]a_k??)[/mm]
>  

das kommt mir allerdings auch spanisch vor. wenn man der üblichen definition von [mm] $\lim\sup$ [/mm] folgt, müsste da in der tat [mm] $a_k$ [/mm] statt [mm] $a_n$ [/mm] stehen.

> [mm]\sigma_{n}:=[sup_{k \ge n} \wurzel[k]{|a_n|}[/mm]

ich denke, das sollte eigentlich
[mm] $\sigma_{n}:=[sup_{k \ge n} \wurzel[k]{|a_k|}$ [/mm]
heißen.

> Wir haben hieraus geschlussfolgert, dass die Folge
> [mm](\sigma_{n})_n[/mm] monoton fallend ist.
>  
> ??
>  Wieso das denn?

zumindest, wenn [mm] $\sigma_n$ [/mm] so definiert ist, wie ich denke, ist es logisch. je größer n wird, desto 'kleiner' wird die Menge, über die das supremum gebildet wird. es kann also höchstens kleiner werden.

>Also Wurzelfunktionen sind doch immer

> monoton steigend. Jetzt haben wir eine Reihe und das
> Supremum davon - aber wie kann ich nachweisen, dass das
> monoton fallend ist?
>  
> Es muss vermutlich gelten [mm]a_n[/mm] > [mm]a_{n+1}.[/mm]
>
> Aber ein Beweis mit Supremum fällt mir nicht ein.
>  
> Grüße
>  Johann
>  
>  

gruß
matthias

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de