www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Folgen und Reihen" - Folge von Treppenfunktionen
Folge von Treppenfunktionen < Folgen und Reihen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Folge von Treppenfunktionen: Konstruktion+Formel für PI
Status: (Frage) beantwortet Status 
Datum: 05:18 Sa 01.08.2009
Autor: Rubstudent88

Aufgabe
Konstruiere eine Folge von Treppenfunktionen auf [-1,1], die in der sup-Norm gegen [mm] f(x)=\wurzel{1-x^{2}} [/mm] konvergiert, und leite daraus eine Formel für PI her.

Guten Morgen liebes Matheforum.net,

ich habe ein größeres Problem mit der oben stehenden Aufgabe, die im Zusammenhang mit der Supremumsnorm, mit Regelfunktionen und mit dem Intergral einer stetigen Funktion (f [mm] \varepsilon [/mm] R([a,b]): [mm] \integral {f}:=\limes_{n\rightarrow\infty} \integral {C_{n}} [/mm] , wobei [mm] C_{n}Folge [/mm] von Treppenfunktionen, für die gilt: [mm] \limes_{n\rightarrow\infty} ||C_{n}-f||=0) [/mm] steht.

Nur leider weiß ich überhaupt nicht, wie ich da vorgehen muss und wie auf eine Folge von Treppenfunktionen überhaupt im Allgemeinen komme.
Eine Funktion C: [mm] [a,b]-->\IR [/mm] heißt Treppenfunktion, falls eine Unterteilung [mm] a=x_{0} [/mm] < [mm] x_{1} [/mm] < ... < [mm] x_{n}=b [/mm] existiert, so dass C auf jedem offenen Teilintervall [mm] (x_{k-1}, x_{k}) [/mm] konstant ist. Nur irgendwie hilft es mir nicht weiter bzgl. einer Folge von Treppenfunktion.

Ich vermute, man muss hier mit der eulerischen Formel bzw. mit [mm] 1=cos(x)^{2}+sin(x)^{2} [/mm] hantieren muss. Nur wie gesagt ich weiß nicht wirklich wie. Deswegen wäre ich um jede Hilfe dankbar!

Mit freundlichen Grüßen

rubstudent88

        
Bezug
Folge von Treppenfunktionen: Antwort
Status: (Antwort) fertig Status 
Datum: 18:54 Sa 01.08.2009
Autor: felixf

Hallo!

> Konstruiere eine Folge von Treppenfunktionen auf [-1,1],
> die in der sup-Norm gegen [mm]f(x)=\wurzel{1-x^{2}}[/mm]
> konvergiert, und leite daraus eine Formel für PI her.
>  
> Guten Morgen liebes Matheforum.net,
>  
> ich habe ein größeres Problem mit der oben stehenden
> Aufgabe, die im Zusammenhang mit der Supremumsnorm, mit
> Regelfunktionen und mit dem Intergral einer stetigen
> Funktion (f [mm]\varepsilon[/mm] R([a,b]): [mm]\integral {f}:=\limes_{n\rightarrow\infty} \integral {C_{n}}[/mm]
> , wobei [mm]C_{n}Folge[/mm] von Treppenfunktionen, für die gilt:
> [mm]\limes_{n\rightarrow\infty} ||C_{n}-f||=0)[/mm] steht.
>  
> Nur leider weiß ich überhaupt nicht, wie ich da vorgehen
> muss und wie auf eine Folge von Treppenfunktionen
> überhaupt im Allgemeinen komme.
>  Eine Funktion C: [mm][a,b]-->\IR[/mm] heißt Treppenfunktion, falls
> eine Unterteilung [mm]a=x_{0}[/mm] < [mm]x_{1}[/mm] < ... < [mm]x_{n}=b[/mm]
> existiert, so dass C auf jedem offenen Teilintervall
> [mm](x_{k-1}, x_{k})[/mm] konstant ist. Nur irgendwie hilft es mir
> nicht weiter bzgl. einer Folge von Treppenfunktion.

Nun, hier darfst du deiner Fantasie freien Lauf lassen...

> Ich vermute, man muss hier mit der eulerischen Formel bzw.
> mit [mm]1=cos(x)^{2}+sin(x)^{2}[/mm] hantieren muss. Nur wie gesagt
> ich weiß nicht wirklich wie. Deswegen wäre ich um jede

Nein, die eulersche Formel brauchst du nicht. Um eine Formel fuer [mm] $\pi$ [/mm] zu finden, beachte [mm] $\pi [/mm] = 2 [mm] \int_{-1}^1 \sqrt{1 - x^2} [/mm] dx$.

LG Felix


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de