www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Uni-Analysis-Induktion" - Folgeglieder alle positiv
Folgeglieder alle positiv < Induktion < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis-Induktion"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Folgeglieder alle positiv: Monotonie / Folgen
Status: (Frage) beantwortet Status 
Datum: 17:00 Mo 26.05.2008
Autor: mdemes

Aufgabe
[Dateianhang nicht öffentlich]

Hey!

Ich sitze gerade an dieser Aufgabe und habe überhaupt keinen Plan :( - Hatten im Tutorium eine Aufgabe gerechnet in der wir Grenzen gegeben hatten und kann überhaupt keinen Zusammenhang erknnen....

Zu i) ich meine es ist offensichtlich, dass die Funktion gegen 0 konvergiert. Wäre dies schon ein Beweis

2. Idee: Die Funktion Explizit notieren und zeigen, dass diese gegen 0 konvergiert.

zu ii) Monotonie. Mit dem Zwischenwertsatz.

Habt ihr eine Idee für mich?

Danke!


Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

Dateianhänge:
Anhang Nr. 1 (Typ: jpg) [nicht öffentlich]
        
Bezug
Folgeglieder alle positiv: Antwort
Status: (Antwort) fertig Status 
Datum: 17:10 Mo 26.05.2008
Autor: fred97

Die Folge (-1/n) konvergiert gegen Null, die Folgenglieder sind aber negativ.

Zu Deiner Aufgabe: benutze das Monotoniekriterium für Folgen. Zeige also:

   die Folge ist beschränkt und monoton.

Dann ist sie konvergent.

Nennen wir den Grenzwert x.
Dann gilt x=x/(x+2). Wäre x ungleich Null, so würde folgen: x=-1. Das geht aber nicht, da alle Folgenglieder positiv sind. Also ist x=0.


FRED

Bezug
        
Bezug
Folgeglieder alle positiv: Antwort
Status: (Antwort) fertig Status 
Datum: 17:21 Mo 26.05.2008
Autor: abakus


> [Dateianhang nicht öffentlich]
>  Hey!
>
> Ich sitze gerade an dieser Aufgabe und habe überhaupt
> keinen Plan :( - Hatten im Tutorium eine Aufgabe gerechnet
> in der wir Grenzen gegeben hatten und kann überhaupt keinen
> Zusammenhang erknnen....
>  
> Zu i) ich meine es ist offensichtlich, dass die Funktion
> gegen 0 konvergiert. Wäre dies schon ein Beweis
>  
> 2. Idee: Die Funktion Explizit notieren und zeigen, dass
> diese gegen 0 konvergiert.
>  
> zu ii) Monotonie. Mit dem Zwischenwertsatz.
>  
> Habt ihr eine Idee für mich?

Hallo,
bei ii) würde ich den Term [mm] x_{n+1}-x_n [/mm] bilden und zeigen, dass dieser negativ ist (vorher muss gezeigt sein, dass alle Glieder positiv sind. Das ist aber nur ein Mini-Induktionsbeweis.)

Ansonsten kann man ebenfalls induktiv beweisen, dass jedes Folgenglied die Form [mm] a_n=\bruch{1}{2^n-1} [/mm] besitzt, und die ist offensichtlich monoton fallend.
Viele Grüße
Abakus


>
> Danke!
>  
>
> Ich habe diese Frage in keinem Forum auf anderen
> Internetseiten gestellt.


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis-Induktion"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de