www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Folgen und Reihen" - Folgen+Häufungspunkte
Folgen+Häufungspunkte < Folgen und Reihen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Folgen+Häufungspunkte: Frage (reagiert)
Status: (Frage) reagiert/warte auf Reaktion Status 
Datum: 14:18 Sa 01.12.2007
Autor: Schneckal36

Aufgabe
Es sei [mm] (a_{n})_{n\in\IN} [/mm] eine beschränkte Folge reeller Zahlen, und H sei die Menge der Häufungspunkte von [mm] (a_{n})_{n\in\IN} [/mm] . Zeigen sie:

1. [mm] h:=\sup H\in\IR [/mm] existiert
2. h ist ein Maximum
3. [mm] $\limsup_{n\rightarrow\infty}a_{n}\in [/mm] H$
4. [mm] $\limsup_{n\rightarrow\infty} a_{n} [/mm] = [mm] \sup [/mm] H$

wär super wenn einer vielleicht ne idee zu einer der teilaufgabe hat, weil ich hab nämlich null planung von dem zeugs! ;) irgendwie is es doch immer das selbe, aber ich weiß nie wie ich ansetzten muss...


Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Folgen+Häufungspunkte: Antwort
Status: (Antwort) fertig Status 
Datum: 22:01 Sa 01.12.2007
Autor: XPatrickX


> Es sei [mm](a_{n})_{n\in\IN}[/mm] eine beschränkte Folge reeller
> Zahlen, und H sei die Menge der Häufungspunkte von
> [mm](a_{n})_{n\in\IN}[/mm] . Zeigen sie:
>  
> 1. h:=supH [mm]\in \IR[/mm] existiert
>  2. h ist ein Maximum
>  3. [mm]limsup_{n-->\infty} a_{n} \in[/mm] H
>  4. [mm]limsup_{n-->\infty} a_{n}[/mm] = supH
>  wär super wenn einer vielleicht ne idee zu einer der
> teilaufgabe hat, weil ich hab nämlich null planung von dem
> zeugs! ;) irgendwie is es doch immer das selbe, aber ich
> weiß nie wie ich ansetzten muss...
>  
>
> Ich habe diese Frage in keinem Forum auf anderen
> Internetseiten gestellt.

Hey,
also das gleiche ist es auf keine Fall.

Bei der 1. sollst du zeigen, dass es ein Element in der Menge H gibt, nämlich das Supremum. Da die Folge beschränkt ist sollte dir da der Satz von Bolzano Weierstraß weiterhelfen.

Bei der 2. musst du zeigen, dass das Element h also das Supremum von H auch selber in der Menge H liegt.

Bei der 3. ist verlangt, dass der limsup einen Häufungspunkt der Folge angibt.

Und die 4 baut auf die drei auf, nämlich der limsup muss auch den größten Häufungspunkt angeben.

So vielleicht kommst du mit den "umgangssprachlichen" Formulierungen ja schonmal weiter. Ich lass aber die Frage mal auf unbeantwortet.

Gruß Patrick


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de