www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Folgen und Reihen" - Folgen-Reihen-Beweis
Folgen-Reihen-Beweis < Folgen und Reihen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Folgen-Reihen-Beweis: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 12:59 So 28.09.2014
Autor: bquadrat

Aufgabe
Seien [mm] (a_{n})_{n\in\IN} [/mm] und [mm] (b_{n})_{n\in\IN} [/mm] reelle, gegen 0 konvergierende Zahlenfolgen, für die gilt: [mm] \summe_{n=0}^{\infty}(a_{n}) [/mm] konvergiert und [mm] \summe_{n=0}^{\infty}(b_{n}) [/mm] divergiert.
Behauptung: Dann gilt für ein [mm] N\in\IN: [/mm]
[mm] \forall{n}\ge{N}:|a_{n}|<|b_{n}| [/mm]

Guten Tag,
ich habe mich heute gefragt, ob diese obige Behauptung eventuell stimmen könnte und wie ich diese beweisen bzw. widerlegen könnte, finde jedoch leider keinen Ansatz, der mir bei diesem Problem weiterhilft. Könnte mir da jemand ein paar Hinweise o.ä. geben?

        
Bezug
Folgen-Reihen-Beweis: Antwort
Status: (Antwort) fertig Status 
Datum: 13:08 So 28.09.2014
Autor: Diophant

Hallo,

> Seien [mm](a_{n})_{n\in\IN}[/mm] und [mm](b_{n})_{n\in\IN}[/mm] reelle, gegen
> 0 konvergierende Zahlenfolgen, für die gilt:
> [mm]\summe_{n=0}^{\infty}(a_{n})[/mm] konvergiert und
> [mm]\summe_{n=0}^{\infty}(b_{n})[/mm] divergiert.
> Behauptung: Dann gilt für ein [mm]N\in\IN:[/mm]
> [mm]\forall{n}\ge{N}:|a_{n}|<|b_{n}|[/mm]
> Guten Tag,
> ich habe mich heute gefragt, ob diese obige Behauptung
> eventuell stimmen könnte und wie ich diese beweisen bzw.
> widerlegen könnte, finde jedoch leider keinen Ansatz, der
> mir bei diesem Problem weiterhilft. Könnte mir da jemand
> ein paar Hinweise o.ä. geben?

Das kann so nicht gelten Gegenbeipiel:

[mm] \sum_{k=1}^{\infty} \frac{1}{k} [/mm]


ist divergent,

[mm] \sum_{k=1}^{\infty}(-1)^{k+1}\frac{1}{k}=ln(2) [/mm]

dagegen konvergent. Jedes zweite Folgenglied stimmt hier jedoch überein, also müsstest du deine Vermutung noch dahingehend anpassen. Ich glaube aber, die Vermutung ist komplett falsch und man kann sie auch durch umändern der Relation in 'kleiner gleich' nicht reparieren.


Gruß, Diophant  

 

Bezug
                
Bezug
Folgen-Reihen-Beweis: Korrekturmitteilung
Status: (Korrektur) richtig (detailiert geprüft) Status 
Datum: 13:13 So 28.09.2014
Autor: Gonozal_IX

Hallo Diophant,

du liegst richtig mit deiner Vermutung.

Nimm eine positive monotone Nullfolge, deren Reihe divergiert, multipliziere sie mit 2 und lass sie alternieren.

Gruß,
Gono.

Bezug
                
Bezug
Folgen-Reihen-Beweis: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 14:00 So 28.09.2014
Autor: bquadrat

Oh, ja stimmt.... Gut, dann kann ich meine Behauptung ja wieder unter den Teppich kehren :)

Danke

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de