www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Folgen und Reihen" - Folgen
Folgen < Folgen und Reihen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Folgen: Grenzwert mit Epsilon-Umgebung
Status: (Frage) beantwortet Status 
Datum: 12:55 Mi 17.11.2010
Autor: dani_123

Aufgabe
[mm] an=\bruch{1}{n^2+1} [/mm]
e = [mm] \bruch{1}{2} [/mm]

Hey liebe Leute,

rechne gerade dieses Beispiel. Im Großen und Ganzen ist es mir ja klar. Denn der Grenzwert ist 0 und ich muss nur noch beweisen, dass Epsilon > an-a ist.

Doch ich hab da bei der Lösung einige Probleme, denn wenn:
an-a < e
[mm] \bruch{1}{n^2+1} [/mm] - 0 < e
-> [mm] \bruch {1}{n^2+1} [/mm] < e
n> [mm] \wurzel{\bruch{1}{e}-1} [/mm]

somit ist e= [mm] \bruch{1}{2} [/mm] -> [mm] n(\bruch{1}{2})= [/mm] 2    ---WARUM 2

Bitte um Hilfe!
Denn ich verstehe nicht warum 2

Danke Dani
Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Folgen: Antwort
Status: (Antwort) fertig Status 
Datum: 13:00 Mi 17.11.2010
Autor: fred97

Für [mm] $\varepsilon=1/2$ [/mm]  ist

                  $ [mm] \wurzel{\bruch{1}{\varepsilon}-1} [/mm] =1$

Das kleinste n mit $n>  [mm] \wurzel{\bruch{1}{\varepsilon}-1} [/mm] $  ist also n=2.

FRED

Bezug
                
Bezug
Folgen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 13:09 Mi 17.11.2010
Autor: dani_123

Okay, hab ich das richtig verstanden, dass das Ergebnis 1 für das erste Foglenglied [mm] \bruch{1}{2} [/mm] und somit die 2 für das Zweite steht?

Denn dann ist es für mich logisch, dass ich das nächst Kleinere wähle somit 2!



Bezug
                        
Bezug
Folgen: echt größer als
Status: (Antwort) fertig Status 
Datum: 13:14 Mi 17.11.2010
Autor: Roadrunner

Hallo Dani!



> Okay, hab ich das richtig verstanden, dass das Ergebnis 1 für das erste Foglenglied
> [mm]\bruch{1}{2}[/mm] und somit die 2 für das Zweite steht?

Bedenke, dass in der Bedingung ein [mm]\red{>}[/mm] (also "echt größer als") steht. Der gesuchte Wert [mm]n(\varepsilon)[/mm] muss also [mm]> \ 1[/mm] sein. Und diese Bedingung wird erfüllt für alle [mm]n \ \ge \ n(\varepsilon) \ = \ 2[/mm] .


> Denn dann ist es für mich logisch, dass ich das nächst Kleinere wähle somit 2!

Den Satz verstehe ich nicht.


Gruß vom
Roadrunner


Bezug
                                
Bezug
Folgen: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 13:20 Mi 17.11.2010
Autor: dani_123

Danke, jetzt hab ich es!!!



Bezug
                        
Bezug
Folgen: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 13:17 Mi 17.11.2010
Autor: fred97


> Okay, hab ich das richtig verstanden, dass das Ergebnis 1
> für das erste Foglenglied [mm]\bruch{1}{2}[/mm] und somit die 2
> für das Zweite steht?

Ich glaube nicht, dass Du verstanden hast, worum es geht !


FRED

>  
> Denn dann ist es für mich logisch, dass ich das nächst
> Kleinere wähle somit 2!
>  
>  


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de