www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Folgen und Reihen" - Folgen
Folgen < Folgen und Reihen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Folgen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 22:12 Do 27.10.2011
Autor: Valerie20

Aufgabe
Man untersuche : [mm] k_{n}= \bruch{n!}{n^n} [/mm] mit [mm] (k_{n})_{n\in\IN} [/mm] auf beschränktheit.

Hi!
Habe folgendermaßen angefangen:
[mm] k_{1}=1 [/mm]
Um festzustellen ob "1" eine obere Schranke ist möchte ich zeigen, dass k{n} monoton fallend ist:
[mm] k_{n+1}-k_{n}<0 [/mm]

[mm] \bruch{(n+1)!}{(n+1)^{n+1}}-\bruch{n!}{n^n}<0 [/mm]

[mm] \gdw \bruch{ n!\overbrace{((n+1)-(n+1)^{n+1})}^{<0}}{n^n*(n+1)^{n+1}} [/mm]

[mm] \Rightarrow [/mm] Streng mon. fallend.
[mm] \Rightarrow [/mm] 1 ist obere Schranke

Wie zeige ich jetzt das "0" die untere Schranke ist?

Reicht es zu schreiben, dass [mm] \bruch{n!}{n^n} [/mm] mit [mm] n\in \IN [/mm] >0 für alle n?


gruß

        
Bezug
Folgen: Antwort
Status: (Antwort) fertig Status 
Datum: 22:30 Do 27.10.2011
Autor: reverend

Hallo Valerie,

vorab: Du gibst hier im Forum in letzter Zeit gute Antworten. Vielen Dank dafür!

Die Aufgabe hast Du offenbar auch schon weitestgehend gelöst.

> Man untersuche : [mm]k_{n}= \bruch{n!}{n^n}[/mm] mit
> [mm](k_{n})_{n\in\IN}[/mm] auf beschränktheit.
>
>  Habe folgendermaßen angefangen:
>  [mm]k_{1}=1[/mm]
>  Um festzustellen ob "1" eine obere Schranke ist möchte
> ich zeigen, dass k{n} monoton fallend ist:
>  [mm]k_{n+1}-k_{n}<0[/mm]
>  
> [mm]\bruch{(n+1)!}{(n+1)^{n+1}}-\bruch{n!}{n^n}<0[/mm]
>  
> [mm]\gdw \bruch{ n!\overbrace{((n+1)-(n+1)^{n+1})}^{<0}}{n^n*(n+1)^{n+1}}[/mm]
>  
> [mm]\Rightarrow[/mm] Streng mon. fallend.
>  [mm]\Rightarrow[/mm] 1 ist obere Schranke

Stimmt. Allerdings musst Du dazu noch die Selbstverständlich niederschreiben, dass [mm] \bruch{1!}{1^1}\le1 [/mm] ist.

> Wie zeige ich jetzt das "0" die untere Schranke ist?
>  
> Reicht es zu schreiben, dass [mm]\bruch{n!}{n^n}[/mm] mit [mm]n\in \IN[/mm]
> >0 für alle n?

Ich denke, dass das reicht. Sicherer ist dies:
Da für [mm] n\in\IN [/mm] sowohl n!>0 also auch [mm] n^n>0 [/mm] ist, ist auch [mm] \bruch{n!}{n^n}>0. [/mm]

Herzliche Grüße
reverend


Bezug
                
Bezug
Folgen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 22:57 Do 27.10.2011
Autor: Valerie20


> Hallo Valerie,
>  
> vorab: Du gibst hier im Forum in letzter Zeit gute
> Antworten. Vielen Dank dafür!

Danke!

> Ich denke, dass das reicht. Sicherer ist dies:
>  Da für [mm]n\in\IN[/mm] sowohl n!>0 also auch [mm]n^n>0[/mm] ist, ist auch
> [mm]\bruch{n!}{n^n}>0.[/mm]

Danke erstmal für die schnelle Antwort.
Habe mir überlegt einfach den [mm] \limes_{n\rightarrow\infty} k_{n} [/mm] zu berechnen um zu zeigen, dass "0" die untere Schranke ist.
Leider scheint mir das nicht so einfach zu sein.

[mm] \limes_{n\rightarrow\infty}k_{n}=\limes_{n\rightarrow\infty} \bruch{n!}{n^n}=\limes_{n\rightarrow\infty}\bruch{n*(n-1)!}{n*n^{n-1}}=\limes_{n\rightarrow\infty}\bruch{(n-1)!}{n^{n-1}} [/mm]

Wie könnte man denn nun weitermachen?

[mm] \limes_{n\rightarrow\infty}n^{-(n-1)}*{(n-1)!} [/mm] geht nicht, da ein

Ausdruck "0 * [mm] \infty" [/mm] entsteht.
Könnte das höchstens logisch folgern, wie:

[mm] \bruch{(n-1)*(n-2)*...*2*1}{\underbrace{n*n....*n*n}_{n-1 mal}} [/mm]

Und das geht dann gegen Null.

gruß

Bezug
                        
Bezug
Folgen: Antwort
Status: (Antwort) fertig Status 
Datum: 23:21 Do 27.10.2011
Autor: reverend

Hallo nochmal,

>  Habe mir überlegt einfach den [mm]\limes_{n\rightarrow\infty} k_{n}[/mm]
> zu berechnen um zu zeigen, dass "0" die untere Schranke
> ist.
>  Leider scheint mir das nicht so einfach zu sein.
>  
> [mm]\limes_{n\rightarrow\infty}k_{n}=\limes_{n\rightarrow\infty} \bruch{n!}{n^n}=\limes_{n\rightarrow\infty}\bruch{n*(n-1)!}{n*n^{n-1}}=\limes_{n\rightarrow\infty}\bruch{(n-1)!}{n^{n-1}}[/mm]
>  
> Wie könnte man denn nun weitermachen?
>  
> [mm]\limes_{n\rightarrow\infty}n^{-(n-1)}*{(n-1)!}[/mm] geht nicht,
> da ein
>
> Ausdruck "0 * [mm]\infty" $"="" src="http://teximg.matheraum.de/render?d=108&s=$%5Cinfty$" "=""> entsteht. Na, das ist ja erst einmal eine gute Voraussetzung, um l'Hospital anzuwenden (natürlich eher vor der letzten Umformung). Leider ist die Fakultätsfunktion nicht so gut abzuleiten, wenn man sie nicht durch die [url=http://de.wikipedia.org/wiki/Stirlingformel] Stirling-Formel [/url] ersetzt. > Könnte das höchstens logisch folgern, wie: > > $\bruch{(n-1)*(n-2)*...*2*1}{\underbrace{n*n....*n*n}_{n-1 mal}}[/mm]
</font>
<br>
<font class=>  
> Und das geht dann gegen Null.

Viel besser. Hier geht eines der möglichen "sauberen" Argumente so: die ersten (n-2) Faktoren sind <1, der letzte geht für [mm] n\to\infty [/mm] gegen Null.

Grüße
reverend


Bezug
                                
Bezug
Folgen: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 23:25 Do 27.10.2011
Autor: Valerie20

Ok, danke.


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de