www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Folgen und Reihen" - Folgen
Folgen < Folgen und Reihen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Folgen: Umformung
Status: (Frage) beantwortet Status 
Datum: 23:57 Sa 12.11.2011
Autor: sissile

Aufgabe
[mm] \frac {n}{n^2+4} [/mm] < [mm] \varepsilon [/mm]
n=...?

Ich stecke grade fest bei etwas ganz einfachen, aber bin anscheinend zu dumm...

| [mm] \frac{n}{n^2 + 4} [/mm] | < [mm] \frac{n}{n^2+4} [/mm] < [mm] \varepsilon [/mm]

[mm] \frac{n}{n^2+4} [/mm] < [mm] \varepsilon [/mm]
bin zu blöd um dass in die Form n =... zu bringen
Kann mir da wer helfen?

        
Bezug
Folgen: Antwort
Status: (Antwort) fertig Status 
Datum: 01:24 So 13.11.2011
Autor: reverend

Hallo sissile,

> [mm]\frac {n}{n^2+4}[/mm] < [mm]\varepsilon[/mm]
>  n=...?
>  Ich stecke grade fest bei etwas ganz einfachen, aber bin
> anscheinend zu dumm...
>  
> | [mm]\frac{n}{n^2 + 4}[/mm] | < [mm]\frac{n}{n^2+4}[/mm] < [mm]\varepsilon[/mm]
>  
> [mm]\frac{n}{n^2+4}[/mm] < [mm]\varepsilon[/mm]
>  bin zu blöd um dass in die Form n =... zu bringen
>  Kann mir da wer helfen?

[mm] n<\varepsilon(n^2+4)=\varepsilon n^2+4\varepsilon [/mm]

[mm] n^2-\bruch{n}{\varepsilon}+4>0 [/mm]

Jetzt pq-Formel.

Grüße
reverend


Bezug
        
Bezug
Folgen: Antwort
Status: (Antwort) fertig Status 
Datum: 06:44 So 13.11.2011
Autor: Al-Chwarizmi


> [mm]\frac {n}{n^2+4}[/mm] < [mm]\varepsilon[/mm]
>  n=...?
>  Ich stecke grade fest bei etwas ganz einfachen, aber bin
> anscheinend zu dumm...
>  
> | [mm]\frac{n}{n^2 + 4}[/mm] | < [mm]\frac{n}{n^2+4}[/mm] < [mm]\varepsilon[/mm]
>  
> [mm]\frac{n}{n^2+4}[/mm] < [mm]\varepsilon[/mm]



Wenn es nur darum geht, zu zeigen, dass es sich hier
um eine Nullfolge geht, muss man die Ungleichung
gar nicht unbedingt "exakt" lösen, sondern es genügt
zu zeigen, dass die Ungleichung für alle genügend großen
[mm] n\in\IN [/mm] erfüllt ist.

Man kann dann die Ungleichung

     (1)   [mm]\frac {n}{n^2+4}\ <\ \varepsilon[/mm]

durch die einfachere Ungleichung

     (2)   [mm]\frac {n}{n^2}\ <\ \varepsilon[/mm]

ersetzen (weshalb genau ?), und diese lässt sich nun
wirklich ganz einfach lösen.

LG   Al-Chw.

Bezug
                
Bezug
Folgen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 08:48 So 13.11.2011
Autor: sissile

Servus also beim Bsp: Beweise Konvergenz durch explizite angabe des [mm] N(\varepsilon) [/mm] aus der Def. der Konvergenz. Folge [mm] a_n [/mm] = [mm] n/(n^2+4) [/mm]

[mm] \frac {n}{n^2+4} [/mm] < [mm] \frac{n}{n^2} [/mm] < [mm] \varepsilon [/mm]
[mm] \frac{1}{n} [/mm] < [mm] \varepsilon [/mm]
n < [mm] \frac{1}{\varepsilon} [/mm]

N [mm] \le \frac{1}{\varepsilon} [/mm]
Hab ich da jetzt was falsch gemacht? weil N plötzlich ja eingeschränkt ist, und kleiner gleich etwas sein soll...(hab ich igendwie das Relationszeichen in die falsche Richtung??)

Bezug
                        
Bezug
Folgen: Antwort
Status: (Antwort) fertig Status 
Datum: 09:09 So 13.11.2011
Autor: Sigrid

Hallo sissile,


$ [mm] \frac {n}{n^2+4} [/mm] $ < $ [mm] \frac{n}{n^2} [/mm] $ < $ [mm] \varepsilon [/mm] $
$ [mm] \frac{1}{n} [/mm] $ < $ [mm] \varepsilon [/mm] $
n < $ [mm] \frac{1}{\varepsilon} [/mm] $

N $ [mm] \le \frac{1}{\varepsilon} [/mm] $

Hier stimmt was nicht. Es muss heißen:

n > $ [mm] \frac{1}{\varepsilon} [/mm] $

Daraus kannst Du dann folgern:

|$ [mm] \frac {n}{n^2+4} [/mm] $| < $ [mm] \varepsilon [/mm] $

Beachte:
Wenn a, b > 0, dann gilt:

$ a < b  [mm] \gdw \frac [/mm] {1}{a} > [mm] \frac [/mm] {1}{b} $

Gruß
Sigrid






Bezug
                                
Bezug
Folgen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 09:19 So 13.11.2011
Autor: sissile

$ [mm] \frac {n}{n^2+4} [/mm] $ < $ [mm] \frac{n}{n^2} [/mm] $ < $ [mm] \varepsilon [/mm] $
Das stimm aber noch? wenn ich im Nenner vier abzähle wird es größer

$ [mm] \frac{1}{n} [/mm] $ < $ [mm] \varepsilon [/mm] $
n > $ [mm] \frac{1}{\varepsilon} [/mm] $

> N $ > [mm] \frac{1}{\varepsilon} [/mm] $

nicht [mm] \ge [/mm] ? wieso nicht


Dass ist dann doch soweit fertig?
Ich hätte noch eine Frage zu Beschränktheit!
Ich habe gezeigt, dass die Folge [0,2[ wachsend ist und noch [2, [mm] \infty[ [/mm] fallend. So kann ich ja aus der Monotonie folgern, dass bei [mm] a_n [/mm] =1/4 die Folge nach oben beschränkt ist?
Und der lim [mm] n/(n^2 [/mm] +4) = 0
[mm] n->\infty [/mm]
Jetzt habe ich in vielen Foren gelesen, dass sie dies noch mit vollständiger Induktion beweisen! Muss man das machen wenn man Beschränktheit zeigen soll?? (Und wie würde ich das hier machen?)
Ganz liebe Grüße

Bezug
                                        
Bezug
Folgen: Antwort
Status: (Antwort) fertig Status 
Datum: 09:46 So 13.11.2011
Autor: fred97


> [mm]\frac {n}{n^2+4}[/mm] < [mm]\frac{n}{n^2}[/mm] < [mm]\varepsilon[/mm]
>  Das stimm aber noch? wenn ich im Nenner vier abzähle wird
> es größer
>  
> [mm]\frac{1}{n}[/mm] < [mm]\varepsilon[/mm]
>  n > [mm]\frac{1}{\varepsilon}[/mm]

>  
> > N [mm]> \frac{1}{\varepsilon}[/mm]
>  nicht [mm]\ge[/mm] ? wieso nicht
>  
>
> Dass ist dann doch soweit fertig?

Ja


>  Ich hätte noch eine Frage zu Beschränktheit!
>  Ich habe gezeigt, dass die Folge [0,2[ wachsend ist und
> noch [2, [mm]\infty[[/mm] fallend. So kann ich ja aus der Monotonie
> folgern, dass bei [mm]a_n[/mm] =1/4 die Folge nach oben beschränkt
> ist?
>  Und der lim [mm]n/(n^2[/mm] +4) = 0
>  [mm]n->\infty[/mm]
>  Jetzt habe ich in vielen Foren gelesen, dass sie dies noch
> mit vollständiger Induktion beweisen! Muss man das machen
> wenn man Beschränktheit zeigen soll?? (Und wie würde ich
> das hier machen?)


0 [mm] \le a_n= \bruch{n}{n^2+4} \le [/mm] 1/n [mm] \le [/mm] 1

FRED

>  Ganz liebe Grüße


Bezug
                                                
Bezug
Folgen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 09:59 So 13.11.2011
Autor: sissile

Okay, also sagst du, dass wenn man die Konvergenz bewiesen hat auch die Beschränktheit zum einen Teil bewiesen ist?
Die Beschränktheit so zu machen, wie ich es schrieb und dann nicht die Konvergenz zu beweisen wäre unvollstädig?

Bitte nur kurz meine Fragen beantworten, danke ;)
Dann geb ich eine Ruh ;)

Bezug
                                                        
Bezug
Folgen: Antwort
Status: (Antwort) fertig Status 
Datum: 10:04 So 13.11.2011
Autor: fred97

Das




0 $ [mm] \le a_n= \bruch{n}{n^2+4} \le [/mm] $ 1/n $ [mm] \le [/mm] $

zeigt doch die Beschränktheit !

FRED

Bezug
                                                                
Bezug
Folgen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 10:18 So 13.11.2011
Autor: sissile

Ich hatte zei Fragen ... -.-
Die Beschränktheit mit 1/n ist einen doch aber nur klar nachdem man die Konvergenz bewiesen hat.
Bitte auf meine Frage eingehen!

Bezug
                                                                        
Bezug
Folgen: Antwort
Status: (Antwort) fertig Status 
Datum: 10:36 So 13.11.2011
Autor: kamaleonti


>  Die Beschränktheit mit 1/n ist einen doch aber nur klar
> nachdem man die Konvergenz bewiesen hat.

Das geht hier Hand in Hand. Die Abschätzung

       [mm] 0\le a_n=\bruch{n}{n^2+4}\le\frac{1}{n}\le1 [/mm]

gilt für alle [mm] n\in\IN. [/mm] Beachte [mm] \bruch{n}{n^2+4}\le\frac{n}{n^2}=\frac{1}{n}, [/mm] man darf bei Abschätzung nach oben den Nenner verkleinern.

Und ja, wenn du gezeigt hast, dass eine Folge konvergiert, dann folgt automatisch die Beschränktheit (die umgekehrte Implikation gilt nicht unbedingt).

LG



Bezug
                                                                                
Bezug
Folgen: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 10:52 So 13.11.2011
Autor: sissile

danke, vertstanden LG ;))

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de