Folgen - Differenz-Methode < Folgen+Grenzwerte < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
|
Status: |
(Frage) beantwortet | Datum: | 14:56 Di 28.10.2008 | Autor: | JJones |
Aufgabe | [Nachweis der Monotonie mithilfe der Differenz)
gegeben ist die zahlenfolge (an) mit an=1-2n/n, n [mm] \in \IN* (\IN [/mm] ohne Null)
a) zeichnen sie mit dem GTR einen Graphen
b) Untersuchen sie (an) auf Monotonie und Beschränktheit
Lösung:
a) [mm] an=\bruch{1-2n}{n}= \bruch{1}{n}-2= -2+\bruch{1}{n} [/mm] (vereinfachen)
b) um die Monotonie nachweisen zu können, bildet man die Differenz:
an+1-an:
(-2+ [mm] \bruch{1}{n+1})-(-2+\bruch{1}{n}) [/mm] = [mm] (\bruch{1}{n(n+1)} [/mm] )
sie ist negativ für alle[mm] n [mm] \in \IN*, [/mm] daher ist an+1<an
(an) ist streng monoton fallend
die Folge ist auch beschränkt:
obere Schranke S=a1=-1
untere Schranke s=-2 da an=-2+1/n>-2 ist für alle n [mm] \in \IN*
[/mm]
|
Hallo erstmal,
Die oben genannte Aufgabe ist eine Beispielaufgabe aus meinem Buch. (Klett,BW Kursstufe 1.Auflage). Die Lösung ist also schon abgedruckt.
Ich versuche gerade die Aufgabe Schritt für Schritt nach zu vollziehen - leider ohne Erfolg.
Das erste Problem ergibt sich bei der Bildung der Differenz - ich habe keinen Blassen Schimmer wie man auf die vereinfachte Form kommt [mm] (\bruch{1}{n(n+1)} [/mm] )
Wenn ich versuche, es zu vereinfachen, kommt bei mir das raus:
an+1 - an
(-2+ [mm] \bruch{1}{n+1})-(-2+\bruch{1}{n})
[/mm]
die -2 fällt weg, also ergibt sich:
[mm] (\bruch{1}{n+1}) [/mm] - [mm] (\bruch{1}{n})
[/mm]
gleichen Nenner finden
[mm] (\bruch{1}{n(n+1)}) [/mm] - [mm] (\bruch{1}{n(n+1)})
[/mm]
-> aber da hebt sich doch der Term auf?!!! Kann nicht stimmen - soviel weiß ich selbst ;) Aber als _totaler_ Mathe Versager komm ich auch nicht auf die richtige Lösung...
Kann mir das jemand Shritt für Schritt aufschreiben?
Mein zweites Problem ist die Definition der Schranken: was bedeuted S=a1 =-1 ? Heißt das, dass der Funktionswert den Wert für a1, also -1, nicht überschreitet? Bzw. dass das größte a, a1 ist?
dankeschön schonmal im vorraus,
J
Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.
|
|
|
|
Status: |
(Antwort) fertig | Datum: | 15:23 Di 28.10.2008 | Autor: | Fulla |
Hallo JJones,
wenn du die Brüche auf den Hauptnenner bringst, musst du den Zähler auch mitmultiplizieren.
[mm] $\frac{1}{n+1}- \frac{1}{n}=\frac{n}{n(n+1)}-\frac{n+1}{n(n+1)}=-\frac{1}{n(n+1)}$
[/mm]
Lieben Gruß,
Fulla
|
|
|
|