www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Folgen und Reihen" - Folgen,Teilfolgen(Beweisen)
Folgen,Teilfolgen(Beweisen) < Folgen und Reihen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Folgen,Teilfolgen(Beweisen): Frage (überfällig)
Status: (Frage) überfällig Status 
Datum: 18:20 Mi 02.12.2009
Autor: TheBozz-mismo

Aufgabe
Wir definieren die Folge [mm] {a_{n}} [/mm] von n=0 bis [mm] \infty [/mm] durch [mm] a_{n}:=Arg(\produkt_{k=0}^{n}(k+i)). [/mm] Sei [mm] a\in[0,2\pi]. [/mm] Argumentieren Sie, warum es eine Teilfolge [mm] {a_{n}_{k}} [/mm] von k=0 bis [mm] \infty [/mm] gibt mit [mm] \limes_{k\rightarrow\infty}{a_{n}_{k}} [/mm] =a

So, zuerst habe ich mir überlegt, wie die definierte Folge aussieht und ich denke, dass die Folge im Kreis geht. Dann habe ich mir überlegt, ob man den Satz von Bolzano-Weierstraß anwenden kann, dass heißt, die Folge an ist beschränkt und nach dem Satz gibt es dann min. einen Häufungswert und daraus kann man vielleicht die Behauptung belegen.

Sind meine Überlegungen brauchbar und wenn nicht, kann mir einer das erklären, wie man sonst argumentieren soll, sodass es richtig ist und ich es verstehe.

Vielen Dank
TheBozz-mismo

        
Bezug
Folgen,Teilfolgen(Beweisen): Antwort
Status: (Antwort) fertig Status 
Datum: 02:19 Do 03.12.2009
Autor: felixf

Hallo TheBozz-mismo!

> Wir definieren die Folge [mm]{a_{n}}[/mm] von n=0 bis [mm]\infty[/mm] durch
> [mm]a_{n}:=Arg(\produkt_{k=0}^{n}(k+i)).[/mm] Sei [mm]a\in[0,2\pi].[/mm]
> Argumentieren Sie, warum es eine Teilfolge [mm]{a_{n}_{k}}[/mm] von
> k=0 bis [mm]\infty[/mm] gibt mit
> [mm]\limes_{k\rightarrow\infty}{a_{n}_{k}}[/mm] =a
>
>  So, zuerst habe ich mir überlegt, wie die definierte
> Folge aussieht und ich denke, dass die Folge im Kreis geht.

Ich denke eher, dass sie im Intervall $[0, 2 [mm] \pi]$ [/mm] liegt. Das ist kein Kreis.

> Dann habe ich mir überlegt, ob man den Satz von
> Bolzano-Weierstraß anwenden kann, dass heißt, die Folge
> an ist beschränkt und nach dem Satz gibt es dann min.
> einen Häufungswert und daraus kann man vielleicht die
> Behauptung belegen.

Der Satz liefert dir, dass es mindestens einen Haeufungswert in $[0, 2 [mm] \pi]$ [/mm] gibt. Du willst aber argumentieren, dass jedes Element aus $[0, 2 [mm] \pi]$ [/mm] ein Haeufungswert ist. Da hilft dir der Satz kein bisschen weiter.

> Sind meine Überlegungen brauchbar und wenn nicht, kann mir
> einer das erklären, wie man sonst argumentieren soll,
> sodass es richtig ist und ich es verstehe.

Hast du dir mal ueberlegt, wie sich [mm] $a_n$ [/mm] und [mm] $a_{n+1}$ [/mm] unterscheiden? (so grob)

Du musst argumentieren, dass sie modulo 2 [mm] $\pi$ [/mm] immer wieder das Intervall $[0, 2 [mm] \pi]$ [/mm] durchlaeuft, in immer kleineren Schritten, aber dass sie niemals aufhoert. (Aequivalent dazu ist: die Reihe [mm] $\sum_{k=0}^\infty [/mm] Arg(k + i)$ ist divergent, die Folge $(Arg(k + [mm] i))_{k\in\IN}$ [/mm] dagegen eine Nullfolge.)

LG Felix


Bezug
                
Bezug
Folgen,Teilfolgen(Beweisen): Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 06:23 Do 03.12.2009
Autor: TheBozz-mismo

Vielen Dank

Ich mach mir mal Gedanken über deine Ansätze.

Gruß
TheBozz-mismo

Bezug
        
Bezug
Folgen,Teilfolgen(Beweisen): Fälligkeit abgelaufen
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 18:20 Sa 05.12.2009
Autor: matux

$MATUXTEXT(ueberfaellige_frage)
Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de