www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Folgen und Reihen" - Folgen und Konvergenz
Folgen und Konvergenz < Folgen und Reihen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Folgen und Konvergenz: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 17:00 Sa 07.11.2009
Autor: melisa1

Aufgabe
Die Folgen [mm] (a_{n)n\in\IN } [/mm] bzw.  [mm] (b_{n)n\in\IN } [/mm] seien definiert durch

[mm] a_{n}= \bruch{1-3n^4}{n^4+5n^3+n+1} [/mm] bzw [mm] b_{n}=\bruch{n^3-(-1)^n*n^2}{9+7n+2n^5} [/mm] für alle n [mm] \in \IN [/mm]  

Hallo;

kann jmd mal schauen ob ich die Aufgaben richtig gelöst habe

ich habe jz für die erste folge

Es [mm] gilt:\bruch{1-3n^4}{n^4+5n^3+n+1} [/mm]   / wir klammern [mm] n^4 [/mm] aus

[mm] \limes_{n\rightarrow\infty} \bruch{\bruch{1}{n^4}-3}{1+\bruch{5}{n}+\bruch{1}{n^3}+\bruch{1}{n^4}} [/mm]

Also gilt:

[mm] \limes_{n\rightarrow\infty} a_{n}=3, [/mm] da

[mm] \limes_{n\rightarrow\infty} \bruch{1}{n^4}= \limes_{n\rightarrow\infty}\bruch{5}{n}= \limes_{n\rightarrow\infty}\bruch{1}{n^3}= \limes_{n\rightarrow\infty}\bruch{1}{n^4}=0 [/mm]

Also ist [mm] a_{n} [/mm] konvergent gegen 3 und somit beschränkt


die zweite schreibe ich lieber auf wenn die erste korrigiert wurde
ich wäre auch sehr dankbar, wenn ihr mir sagen könnt ob das formale auch richtig ist also die schreibweise, weil ich da immer meine Probleme habe

ich bedanke mich im voraus

Lg Melisa



        
Bezug
Folgen und Konvergenz: Antwort
Status: (Antwort) fertig Status 
Datum: 17:05 Sa 07.11.2009
Autor: schachuzipus

Hallo melisa1,

> Die Folgen [mm](a_{n)n\in\IN }[/mm] bzw.  [mm](b_{n)n\in\IN }[/mm] seien
> definiert durch
>  
> [mm]a_{n}= \bruch{1-3n^4}{n^4+5n^3+n+1}[/mm] bzw
> [mm]b_{n}=\bruch{n^3-(-1)^n*n^2}{9+7n+2n^5}[/mm] für alle n [mm]\in \IN[/mm]
> Hallo;
>  
> kann jmd mal schauen ob ich die Aufgaben richtig gelöst
> habe
>  
> ich habe jz für die erste folge
>  
> Es [mm]gilt:\bruch{1-3n^4}{n^4+5n^3+n+1}[/mm]   / wir klammern [mm]n^4[/mm]
> aus

[ok] gute Idee!

>  
> [mm]\limes_{n\rightarrow\infty} \bruch{\bruch{1}{n^4}-3}{1+\bruch{5}{n}+\bruch{1}{n^3}+\bruch{1}{n^4}}[/mm] [ok]
>  
> Also gilt:
>  
> [mm]\limes_{n\rightarrow\infty} a_{n}=3,[/mm]

ui, da steht doch [mm] $\red{-}3$ [/mm] im Zähler ...

>  
> [mm]\limes_{n\rightarrow\infty} \bruch{1}{n^4}= \limes_{n\rightarrow\infty}\bruch{5}{n}= \limes_{n\rightarrow\infty}\bruch{1}{n^3}= \limes_{n\rightarrow\infty}\bruch{1}{n^4}=0[/mm] [ok]

>  
> Also ist [mm]a_{n}[/mm] konvergent gegen [mm] \red{-}3 [/mm]

falsches VZ

> und somit beschränkt
>  
>
> die zweite schreibe ich lieber auf wenn die erste
> korrigiert wurde
>  ich wäre auch sehr dankbar, wenn ihr mir sagen könnt ob
> das formale auch richtig ist also die schreibweise, weil
> ich da immer meine Probleme habe
>  
> ich bedanke mich im voraus
>  
> Lg Melisa
>  
>  

LG

schachuzipus

Bezug
        
Bezug
Folgen und Konvergenz: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 17:51 Sa 07.11.2009
Autor: melisa1

Hallo;

da die erste Folge bis aufs Vorzeichen richtig war geh ich zur nächsten Folge über

Es gilt $ [mm] b_{n}=\bruch{n^3-(-1)^n\cdot{}n^2}{9+7n+2n^5} [/mm] $

[mm] \limes_{n\rightarrow\infty}\bruch{\bruch{1}{n^2}+1^n*\bruch{1}{n^3}}$ \limes_{n\rightarrow\infty}{\bruch{9}{n^5}+\bruch{7}{n^4}+2} [/mm]

Also gilt:

$ [mm] \limes_{n\rightarrow\infty} a_{n}=0 [/mm] da

$ [mm] \limes_{n\rightarrow\infty}\bruch{1}{n^2}=$ \limes_{n\rightarrow\infty}1^n\bruch{1}{n^3}=\bruch{9}{n^5}=$ \limes_{n\rightarrow\infty}\bruch{7}{n^4}=0 [/mm]

d.h  [mm] \bruch{0}{2}=0 [/mm]

Also ist [mm] a_{n} [/mm] konvergent gegen 0 d.h es handelt sich um eine Nullfolge


Lg Melisa

Bezug
                
Bezug
Folgen und Konvergenz: Antwort
Status: (Antwort) fertig Status 
Datum: 18:02 Sa 07.11.2009
Autor: leduart

Hallo
im Prinzip richtig, aber mit  einem Rechenfehlern: man kann [mm] -(-1)^n [/mm] nicht durch +1 ersetzen.
2. du darfst den lim nicht in Zähler und Nenner schreiben, solange due nicht gezeigt hast dass sie einzeln konvergieren und der Nenner nicht gegen 0
also alles sonst richtig.
Gruss leduart


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de