www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Folgen und Reihen" - Folgen und Reihen
Folgen und Reihen < Folgen und Reihen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Folgen und Reihen: Erklärung der/s Symbole/Themas
Status: (Frage) beantwortet Status 
Datum: 14:47 Do 12.11.2009
Autor: Semimathematiker

Aufgabe
Zeigen Sie, dass die folgenden Folgen konvertieren, indem Sie ein geeignetes a [mm] \in \IR [/mm] finden (oder raten) und zeigen, dass für jedes [mm] \varepsilon [/mm] > 0 ein N [mm] \in \IN [/mm] existiert, so dass für alle n [mm] \ge [/mm] N gilt: [mm] |a_{n} [/mm] - a| < [mm] \varepsilon [/mm]

Ich hab da noch ein kleines Verständnisproblem. Ich versuchs mal zu erklären indem ich ein (y,n)-Koordinatenkreuz male und eine fiktieve Funktion einzeichne die bei n > 0, y [mm] \to \infty [/mm] beginnt und sich dann mit fallender, negativer Steigung an, y = 1 annähert.

Damit ist die Funktion auf jeden Fall schon mal konvergent.

Jetzt habe ich noch das Intervall von [mm] a_{n} \in [/mm] ] a - [mm] \varepsilon [/mm] ; a [mm] +\varepsilon [/mm] [ in dessen Mittel sich wohl a befindet und N [mm] \in \IN [/mm] welches sich im Intervall von ]a ; [mm] \infty [/mm] [ befindet.

Hab ich das soweit richtig verstanden?

Wenn das so ist, dann brauch ich nur ein geeignetes a (d.h. eines bei dem n > y in der Steigung ist). Wo also der Schritt auf der n-Achse größer ist als der auf der Y-Achse. [mm] \bruch{1}{2} [/mm] würde sich da anbieten.


Was meint man mit: "...zeigen, dass für jedes [mm] \varepsilon [/mm] > 0 ein N [mm] \in \IN [/mm] existiert..." ?

Etwa das: N - [mm] \varepsilon [/mm] = a [mm] \gdw [/mm] a + [mm] \varepsilon [/mm] = N  ?

Vielen Dank im Voraus :)

        
Bezug
Folgen und Reihen: Antwort
Status: (Antwort) fertig Status 
Datum: 15:46 Fr 13.11.2009
Autor: Denny22

Hallo,

zunaechst wundere Dich nicht, dass Dir bislang noch niemand geantwortet hat, denn das, was Du geschrieben hast, ist ein ziemliches Durcheinander.

> Zeigen Sie, dass die folgenden Folgen konvertieren, indem
> Sie ein geeignetes a [mm]\in \IR[/mm] finden (oder raten) und
> zeigen, dass für jedes [mm]\varepsilon[/mm] > 0 ein N [mm]\in \IN[/mm]
> existiert, so dass für alle n [mm]\ge[/mm] N gilt: [mm]|a_{n}[/mm] - a| <
> [mm]\varepsilon[/mm]

1. Die Eigenschaft, die Du zeigen sollst, heisst "konvergieren" und nicht "konvertieren". Konvertieren tut jemand anderes, aber Folgen tun so etwas nicht (zumindest habe ich dies noch nie zuvor beobachtet :-) )
2. Mit mathematische Symbolen sollst Du genau folgendes zeigen: Finde zu der (reellen) Zahlenfolge [mm] $(a_n)_{n\in\IN}$ [/mm] eine reelle Zahl $a$, so dass die folgende Eigenschaft erfuellt ist:
     [mm] $\forall\,\varepsilon>0\;\exists\,N=N(\varepsilon)\in\IN\;\forall\,n\geqslant N:\;\left|a_n-a\right|\leqslant\varepsilon$ [/mm]
Erfuellt die Folge [mm] $(a_n)_{n\in\IN}$ [/mm] diese Eigenschaft, so heisst sie konvergent (gegen $a$), wobei $a$ in diesem Fall auch als Grenzwert der Folge [mm] $(a_n)_{n\in\IN}$ [/mm] genannt wird. Woertlich formuliert besagt diese Quantorenschreibweise: Zujeder noch so kleinen Schranke [mm] $\varepsilon>0$ [/mm] existiert immer mindestens ein kleinster Folgenindex [mm] $N\in\IN$, [/mm] der von dem Wert [mm] $\varepsilon$ [/mm] abhaengt, so dass jedes Folgenglied [mm] $a_n$, [/mm] deren Index $n$ groesser (oder gleich) $N$ ist, einen Abstand kleiner (oder gleich) [mm] $\varepsilon>0$ [/mm] vom Punkt $a$ besitzt.


>  Ich hab da noch ein kleines Verständnisproblem. Ich
> versuchs mal zu erklären indem ich ein
> (y,n)-Koordinatenkreuz male und eine fiktieve Funktion
> einzeichne die bei n > 0, y [mm]\to \infty[/mm] beginnt und sich
> dann mit fallender, negativer Steigung an, y = 1
> annähert.
>  
> Damit ist die Funktion auf jeden Fall schon mal konvergent.
>
> Jetzt habe ich noch das Intervall von [mm]a_{n} \in[/mm] ] a -
> [mm]\varepsilon[/mm] ; a [mm]+\varepsilon[/mm] [ in dessen Mittel sich wohl a
> befindet und N [mm]\in \IN[/mm] welches sich im Intervall von ]a ;
> [mm]\infty[/mm] [ befindet.
>  
> Hab ich das soweit richtig verstanden?
>  
> Wenn das so ist, dann brauch ich nur ein geeignetes a (d.h.
> eines bei dem n > y in der Steigung ist). Wo also der
> Schritt auf der n-Achse größer ist als der auf der
> Y-Achse. [mm]\bruch{1}{2}[/mm] würde sich da anbieten.
>
>
> Was meint man mit: "...zeigen, dass für jedes [mm]\varepsilon[/mm]
> > 0 ein N [mm]\in \IN[/mm] existiert..." ?
>  
> Etwa das: N - [mm]\varepsilon[/mm] = a [mm]\gdw[/mm] a + [mm]\varepsilon[/mm] = N  ?
>  
> Vielen Dank im Voraus :)

Siehe fuer eine anschauliche Erklaerung auch hier:

[]http://de.wikipedia.org/wiki/Konvergente_Folge

Gruss
Denny

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de