www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Folgen und Grenzwerte" - Folgengrenzwert
Folgengrenzwert < Folgen+Grenzwerte < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Grenzwerte"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Folgengrenzwert: Hilfe, Tipp
Status: (Frage) beantwortet Status 
Datum: 17:23 So 20.11.2011
Autor: Nicky-01

Aufgabe
1) [mm] a_{i}= \bruch{2}{4i^2-1} [/mm] , [mm] i\in\IN [/mm]
2) [mm] a_{i}=\bruch {i-4}{3i^2-24i+48} [/mm] , [mm] i\in\IN_{0} [/mm]

Hallo,
bei den Aufgaben soll ich begründet angeben, ob die Folge konvergiert, im Falle der Konvergenz durch berechnung des GW ...

habe bei der 1. Aufgabe 0 raus
und bei der 2. Aufgabe [mm] \bruch{1}{24} [/mm]

wollte nur fragen, ob dies stimmt, und wenn ja, ist dies doch schon die begründet, dass beide konvergieren, wegen dem Rechenweg ...
bei der 2. Aufgabe bin ich mir vorallem sehr unsicher, ob da nicht vllt doch 0 rauskommt ...



        
Bezug
Folgengrenzwert: Antwort
Status: (Antwort) fertig Status 
Datum: 17:42 So 20.11.2011
Autor: MathePower

Hallo Nicky-01,

> 1) [mm]a_{i}= \bruch{2}{4i^2-1}[/mm] , [mm]i\in\IN[/mm]
>  2) [mm]a_{i}=\bruch {i-4}{3i^2-24i+48}[/mm] , [mm]i\in\IN_{0}[/mm]
>  Hallo,
>  bei den Aufgaben soll ich begründet angeben, ob die Folge
> konvergiert, im Falle der Konvergenz durch berechnung des
> GW ...
>  
> habe bei der 1. Aufgabe 0 raus
>  und bei der 2. Aufgabe [mm]\bruch{1}{24}[/mm]
>
> wollte nur fragen, ob dies stimmt, und wenn ja, ist dies
> doch schon die begründet, dass beide konvergieren, wegen
> dem Rechenweg ...


Das Ergebnis des GW bei der 1. Aufgabe stimmt.


>  bei der 2. Aufgabe bin ich mir vorallem sehr unsicher, ob
> da nicht vllt doch 0 rauskommt ...

>


Dann poste hierzu Deine bisherigen Rechenschritte.

  
Gruss
MathePower  

Bezug
                
Bezug
Folgengrenzwert: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 17:56 So 20.11.2011
Autor: Nicky-01

also da habe ich  
[mm] a_{i}=\bruch {i-4}{3i^2-24i+48} [/mm] = [mm] \bruch{i(1-\bruch{4}{i})}{i(3i-24+\bruch{48}{i})}= \limes_{n\rightarrow\infty}\bruch{1-\bruch{4}{i}}{3i-24+\bruch{48}{i}}=\bruch{1}{24} [/mm]
aber ich weiß nicht genau, ob man da nicht vllt [mm] i^2 [/mm] ausklammern muss,
da uns gesagt wurde, man klammert den höchsten Exponenten im Nenner aus ... das wäre dann ja [mm] i^2 [/mm] ...
dann würde ich es nämlich so machen:
[mm] a_{i}=\bruch {i-4}{3i^2-24i+48}=\bruch{i^2(\bruch{1}{i}-\bruch{4}{i^2})}{i^2(3-\bruch{24}{i}+\bruch{48}{i^2})}=\limes_{n\rightarrow\infty}\bruch{\bruch{1}{i}-\bruch{4}{i^2}}{3-\burch{24}{i}+\bruch{48}{i^2}}=0 [/mm]

Bezug
                        
Bezug
Folgengrenzwert: Antwort
Status: (Antwort) fertig Status 
Datum: 18:11 So 20.11.2011
Autor: MathePower

Hallo Nicky-01,

> also da habe ich  
> [mm]a_{i}=\bruch {i-4}{3i^2-24i+48}[/mm] =
> [mm]\bruch{i(1-\bruch{4}{i})}{i(3i-24+\bruch{48}{i})}= \limes_{n\rightarrow\infty}\bruch{1-\bruch{4}{i}}{3i-24+\bruch{48}{i}}=\bruch{1}{24}[/mm]
>  
> aber ich weiß nicht genau, ob man da nicht vllt [mm]i^2[/mm]
> ausklammern muss,
>  da uns gesagt wurde, man klammert den höchsten Exponenten
> im Nenner aus ... das wäre dann ja [mm]i^2[/mm] ...
>  dann würde ich es nämlich so machen:
>  [mm]a_{i}=\bruch {i-4}{3i^2-24i+48}=\bruch{i^2(\bruch{1}{i}-\bruch{4}{i^2})}{i^2(3-\bruch{24}{i}+\bruch{48}{i^2})}=\limes_{n\rightarrow\infty}\bruch{\bruch{1}{i}-\bruch{4}{i^2}}{3-\burch{24}{i}+\bruch{48}{i^2}}=0[/mm]


So ist es auch richtig. [ok]


Gruss
MathePower  

Bezug
                                
Bezug
Folgengrenzwert: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 18:23 So 20.11.2011
Autor: Nicky-01

welche der beiden denn?
die, wo ich nur i ausgeklammert habe, oder die, wo ich [mm] i^2 [/mm] ausgeklammert habe?

Bezug
                                        
Bezug
Folgengrenzwert: Antwort
Status: (Antwort) fertig Status 
Datum: 18:43 So 20.11.2011
Autor: MathePower

Hallo Nicky-01,

> welche der beiden denn?
>  die, wo ich nur i ausgeklammert habe, oder die, wo ich [mm]i^2[/mm]
> ausgeklammert habe?


Das mit dem [mm]i^{2}[/mm] ausklammern.


Gruss
MathePower

Bezug
                                                
Bezug
Folgengrenzwert: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 18:55 So 20.11.2011
Autor: Nicky-01

ok, also ist der GW 0 ...
danke für die Hilfe!!

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Grenzwerte"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de