www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Folgen und Reihen" - Folgenkonvergenz
Folgenkonvergenz < Folgen und Reihen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Folgenkonvergenz: Grenzwertproblem
Status: (Frage) beantwortet Status 
Datum: 18:00 Di 26.10.2010
Autor: maka_XY

Aufgabe
Wir betrachten die Folge [mm] (x_n)_{n\in\IN} [/mm] , die für ein beliebiges aber festes [mm] x_1 [/mm] mit [mm] x_1 \ge [/mm] 0 rekursiv durch

                   [mm] x_{n+1} [/mm] = [mm] x_n*(cos(pi*x_n))^2, n\in\IN [/mm]

definiert ist.

a) Zeigen Sie mit dem Monotoniekriterium, dass die Folge [mm] (x_n) [/mm] konvergiert.

b) Zeigen Sie, dass der Grenzwert dieser Folge eine nichtnegative ganze Zahl ist.
Hinweis. Ohne Beweis dürfen Sie bei der Lösung von b) folgende Aussage benutzen:
Für alle konvergenten reellen Zahlenfolgen [mm] (a_n) [/mm] gilt [mm] \limes_{n\rightarrow\infty}cos*a_n [/mm] = cos [mm] \limes_{n\rightarrow\infty}a_n [/mm]

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

Hallo!
Hab bei Aufgabenteil b) Probleme. a) ist soweit kein Problem. Hab bei b) folgenden Ansatz nur komme irgendwie nicht weiter:

Da [mm] x_n [/mm] nach a) konvergiert existiert [mm] \limes_{n\rightarrow\infty}x_n [/mm] = a.
Für unendlich grosse n gilt aber auch [mm] \limes_{n\rightarrow\infty}x_n [/mm] = [mm] \limes_{n\rightarrow\infty}x_{n+1} [/mm]

Also lässt sich schreiben:

         [mm] \limes_{n\rightarrow\infty}x_n*(cos(pi*x_n))^2 [/mm] = a

Jetzt versuche ich den Kosinus vorzuziehen:

[mm] \gdw cos*\limes_{n\rightarrow\infty}x_n*(pi*x_n))^2 [/mm] = a

Ist das einfach so möglich?

Nun ist [mm] \limes_{n\rightarrow\infty}x_n [/mm] = a:

[mm] \gdw cos*a*(pi*a))^2 [/mm] = a

Da hapert es jetzt bzw. weiß ich gar nicht, ob ich das bis dahin so hätte machen können... würde mich sehr über Hilfe freuen!

        
Bezug
Folgenkonvergenz: Antwort
Status: (Antwort) fertig Status 
Datum: 18:13 Di 26.10.2010
Autor: abakus


> Wir betrachten die Folge [mm](x_n)_{n\in\IN}[/mm] , die für ein
> beliebiges aber festes [mm]x_1[/mm] mit [mm]x_1 \ge[/mm] 0 rekursiv durch
>  
> [mm]x_{n+1}[/mm] = [mm]x_n*(cos(pi*x_n))^2, n\in\IN[/mm]
>  
> definiert ist.
>  
> a) Zeigen Sie mit dem Monotoniekriterium, dass die Folge
> [mm](x_n)[/mm] konvergiert.
>  
> b) Zeigen Sie, dass der Grenzwert dieser Folge eine
> nichtnegative ganze Zahl ist.
>  Hinweis. Ohne Beweis dürfen Sie bei der Lösung von b)
> folgende Aussage benutzen:
>  Für alle konvergenten reellen Zahlenfolgen [mm](a_n)[/mm] gilt
> [mm]\limes_{n\rightarrow\infty}cos*a_n[/mm] = cos
> [mm]\limes_{n\rightarrow\infty}a_n[/mm]
>  Ich habe diese Frage in keinem Forum auf anderen
> Internetseiten gestellt.
>  
> Hallo!
> Hab bei Aufgabenteil b) Probleme. a) ist soweit kein
> Problem. Hab bei b) folgenden Ansatz nur komme irgendwie
> nicht weiter:
>  
> Da [mm]x_n[/mm] nach a) konvergiert existiert
> [mm]\limes_{n\rightarrow\infty}x_n[/mm] = a.
>  Für unendlich grosse n gilt aber auch
> [mm]\limes_{n\rightarrow\infty}x_n[/mm] =
> [mm]\limes_{n\rightarrow\infty}x_{n+1}[/mm]
>  
> Also lässt sich schreiben:
>  
> [mm]\limes_{n\rightarrow\infty}x_n*(cos(pi*x_n))^2[/mm] = a
>  
> Jetzt versuche ich den Kosinus vorzuziehen:
>  
> [mm]\gdw cos*\limes_{n\rightarrow\infty}x_n*(pi*x_n))^2[/mm] = a
>  
> Ist das einfach so möglich?

Um Himmels Willen.
Da kannst einfach ansetzten
[mm]x_{n}[/mm] = [mm] x_n*(cos(pi*x_n))^2. [/mm]
Daraus folgt [mm] x_n=0 [/mm] oder [mm] (cos(pi*x_n))^2=1 [/mm]
Gruß Abakus


>  
> Nun ist [mm]\limes_{n\rightarrow\infty}x_n[/mm] = a:
>  
> [mm]\gdw cos*a*(pi*a))^2[/mm] = a
>  
> Da hapert es jetzt bzw. weiß ich gar nicht, ob ich das bis
> dahin so hätte machen können... würde mich sehr über
> Hilfe freuen!


Bezug
                
Bezug
Folgenkonvergenz: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 21:22 Di 26.10.2010
Autor: maka_XY

Danke war mal wieder viel einfach er als gedacht ~_~

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de