www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Vektoren" - Formel
Formel < Vektoren < Lin. Algebra/Vektor < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Vektoren"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Formel: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 17:32 Fr 29.08.2008
Autor: puldi

Guten Abend,

krankheitsbedingt habe ich letzte Woche ein paar Mathestunden verpasst. Ich habe mir die Unterlagen von einem Kollegen besorgt und da steht folgende "Formel":

Vektor b und schief unten drutner steht Vektor a

=

Vektor(a) * Vektor (b) / Vektor(a)² * Vektor(a)

Als Erklärung steht da leider nur "Vektor(b) projeziert auf Vektor(a).

Kann mir jemand bitte erklären, was es damit auf sich hat?

Also Aufgabe steht dann noch da:

Vektor(a) = (2|5|3)

Vektor (b) = (3|2|1)

Jetzt soll ich Vektor(a) und schief untendrunter Vektor(b) ausrechnen und das ganze umgekehrt.

Über hilfreiche Tips zum verstehen dieses komplexen Themas würde ich mich sehr freuen!

Danke!

        
Bezug
Formel: Antwort
Status: (Antwort) fertig Status 
Datum: 18:02 Fr 29.08.2008
Autor: angela.h.b.


> Guten Abend,
>  
> krankheitsbedingt habe ich letzte Woche ein paar
> Mathestunden verpasst. Ich habe mir die Unterlagen von
> einem Kollegen besorgt und da steht folgende "Formel":
>  

[mm] \vec{b}_{\vec{a}} [/mm] = [mm] \bruch{\vec{a}*\vec{b}}{\vec{a}^2}*\vec{b}. [/mm]

> Als Erklärung steht da leider nur "Vektor(b) projeziert auf
> Vektor(a).
>  
> Kann mir jemand bitte erklären, was es damit auf sich hat?

Hallo,

ich will's versuchen.

Mit  [mm] \vec{b}_{\vec{a}} [/mm]  ist die Projektion des Vektors [mm] \vec{b} [/mm] auf den Vektor [mm] \vec{a} [/mm] gemeint.

Was hat es mit dieser Projektion auf sich?

Zeichne mal zwei Vektoren [mm] \vec{a} [/mm] und [mm] \vec{b}, [/mm] die mit den Füßen zusammenstoßen und irgendeinen Winkel bilden, am besten einen spitzen.

Jetzt zeichne die Gerade ein, die senkrecht auf [mm] \vec{a} [/mm] steht und durch die Spitze von [mm] \vec{b} [/mm] geht.

Als nächstes zeichne den Vektor ein, der vom gemeinsamen Fuß bis zu dem Punkt geht, wo die Gerade den Vektor [mm] \vec{a} [/mm] kreuzt (schneidet).

Dieser Vektor ist die Projektion von [mm] \vec{b} [/mm] auf vec{a}.

In []diesem Bild ist das der Vektor [mm] \vec{b}_p. [/mm]

Nun weißt Du erstmal, von welchem Vektor die Rede ist.

Ausrechnen kann man ihn, indem man das Skalarprodukt von [mm] \vec{a} [/mm] und [mm] \vec{b} [/mm] (also [mm] \vec{a}*\vec{b}) [/mm] durch das von [mm] \vec{a} [/mm] mit sich selbst  [mm] (\vec{a}*\vec{a}] [/mm] dividiert und die erhaltene zahl mit dem Vektor [mm] \vec{a} [/mm] multipliziert.

Skalarprodukt berechnen? [mm] So:\vektor{1\\2\\3}*\vektor{4\\5\\6}=1*4+2*5+3*6. [/mm]

Gruß v. Angela



> Also Aufgabe steht dann noch da:
>  
> Vektor(a) = (2|5|3)
>  
> Vektor (b) = (3|2|1)
>  
> Jetzt soll ich Vektor(a) und schief untendrunter Vektor(b)
> ausrechnen und das ganze umgekehrt.
>  
> Über hilfreiche Tips zum verstehen dieses komplexen Themas
> würde ich mich sehr freuen!
>  
> Danke!


Bezug
                
Bezug
Formel: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 18:05 Fr 29.08.2008
Autor: puldi

Hallo,

danke!!!

ich nehme jetzt mal folgendes Beispiel:

Vektor (a) = (1|2|3)

Vektor (b) = (2|1|2)

Jetzt die Projektion auf a auf b:

(6 / 14) * Wurzel(14)

Würde das so stimmen, bzw wo liegt der Fehler?

Danke!!

Bezug
                        
Bezug
Formel: Korrektur
Status: (Antwort) fertig Status 
Datum: 18:12 Fr 29.08.2008
Autor: Loddar

Hallo puldi!


Bei zwei 3-dimensionalen Vektoren kann doch als Ergebnis einer Projektion kein 2-dimensionaler Vektor sein.

Wie lauten denn Deine Zwischenergebnisse [mm] $\vec{a}*\vec{b}$ [/mm] bzw. [mm] $\vec{a}^2 [/mm] \ = \ [mm] \vec{a}*\vec{a}$ [/mm] ?

Gruß
Loddar


Bezug
                                
Bezug
Formel: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 18:15 Fr 29.08.2008
Autor: puldi

Vektor (a) = (1|2|3)

Vektor (b) = (2|1|2)

Vektor(a)*(Vektor(b) = 10

Vektor(a²) = 14

10/14 * (Wurzel(14))

So?

Danke!

Bezug
                                        
Bezug
Formel: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 18:16 Fr 29.08.2008
Autor: puldi

Nein!

10/14 * Vektor(1|2|3)

(10/14|2*(10/14)|3*(10/14))

So müsste es sein?

Bezug
                                                
Bezug
Formel: Antwort
Status: (Antwort) fertig Status 
Datum: 18:28 Fr 29.08.2008
Autor: MathePower

Hallo puldi,

> Nein!
>  
> 10/14 * Vektor(1|2|3)
>  
> (10/14|2*(10/14)|3*(10/14))
>  
> So müsste es sein?


Ja. Am besten Du läßt den Vektor so stehen, wie Du ihn als erstes hingeschrieben hast. [ok]


Gruß
MathePower

Bezug
                                                        
Bezug
Formel: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 21:06 Fr 29.08.2008
Autor: puldi

Hallo,

ich glaube ich habs verstanden, noch mal zur Kontrolle:

Vektor(a) =

Vektor(b) =

Vektor(a) wird projeziert auf Vektor(b):

((-18/70)|0|(10/17))

Vektor (b) wird prozeziert auf Vektor(a):

((10/9)|(-20/9)|(-20/9))

Bitte rechnet nach, es ist echt sehr wichtig, danke!!

Bezug
                                                                
Bezug
Formel: Antwort
Status: (Antwort) fertig Status 
Datum: 21:21 Fr 29.08.2008
Autor: MathePower

Hallo puldi,

> Hallo,
>  
> ich glaube ich habs verstanden, noch mal zur Kontrolle:
>  
> Vektor(a) =
>  
> Vektor(b) =


Wie lauten denn die Vektoren a bzw. b ?


>  
> Vektor(a) wird projeziert auf Vektor(b):
>  
> ((-18/70)|0|(10/17))
>  
> Vektor (b) wird prozeziert auf Vektor(a):
>  
> ((10/9)|(-20/9)|(-20/9))
>  
> Bitte rechnet nach, es ist echt sehr wichtig, danke!!


Ohne Vektoren geht das schlecht.


Gruß
MathePower

Bezug
                                                                        
Bezug
Formel: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 21:27 Fr 29.08.2008
Autor: puldi

upps, ganz vergessen:

Vektor(a) = (-1|2|2)

Vektor(b) = (8|0|-1)

Danke!

Bezug
                                                                                
Bezug
Formel: Antwort
Status: (Antwort) fertig Status 
Datum: 21:43 Fr 29.08.2008
Autor: MathePower

Hallo puldi,

> upps, ganz vergessen:
>  
> Vektor(a) = (-1|2|2)
>  
> Vektor(b) = (8|0|-1)

Der Vektor(b) projeziert auf Vektor(a) stimmt.

Den anderen musst nochmal nachrechnen.


>  
> Danke!


Gruß
MathePower

Bezug
                                                                                        
Bezug
Formel: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 21:53 Fr 29.08.2008
Autor: puldi

-10/17 * (8|0|-1)

Noch richtig?

Bezug
                                                                                                
Bezug
Formel: Antwort
Status: (Antwort) fertig Status 
Datum: 22:04 Fr 29.08.2008
Autor: MathePower

Hallo puldi,

> -10/17 * (8|0|-1)
>  
> Noch richtig?


[mm]\bruch{-10}{\red{17}} * \pmat{8 \\ 0 \\ -1}[/mm]

Berechne hier also

[mm]\vec{b}^{2}=\vec{b} \* \vec{b}[/mm]


Gruß
MathePower

Bezug
                                                                                                        
Bezug
Formel: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 22:05 Fr 29.08.2008
Autor: puldi

-10/17 muss ich also reinmultiplizieren.

-80/17
0
10/17

Nicht?

Bezug
                                                                                                                
Bezug
Formel: Antwort
Status: (Antwort) fertig Status 
Datum: 22:13 Fr 29.08.2008
Autor: MathePower

Hallo puldi,

> -10/17 muss ich also reinmultiplizieren.
>  
> -80/17
>  0
>  10/17
>  
> Nicht?

Ja, nur dass die Zahlen unterm Bruchstrich nicht stimmen.

Denn [mm]\pmat{8 \\ 0 \\ -1}*\pmat{8 \\ 0 \\ -1}=8*8+0*0+\left(-1\right)*\left(-1\right) \not = 17[/mm]


Gruß
MathePower

Bezug
                                        
Bezug
Formel: Antwort
Status: (Antwort) fertig Status 
Datum: 18:26 Fr 29.08.2008
Autor: MathePower

Hallo puldi,

> Vektor (a) = (1|2|3)
>  
> Vektor (b) = (2|1|2)
>
> Vektor(a)*(Vektor(b) = 10


[ok]


>  
> Vektor(a²) = 14


[mm]\vec{a}^{2}=14[/mm]

[ok]


>  
> 10/14 * (Wurzel(14))
>  
> So?
>  
> Danke!


Gruß
MathePower

Bezug
                
Bezug
Formel: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 22:04 Fr 29.08.2008
Autor: Blech

Das sollte

$ [mm] \vec{b}_{\vec{a}} =\bruch{\vec{a}\cdot{}\vec{b}}{\vec{a}^2}\cdot{}\vec{a} [/mm] $

sein.

$a [mm] \cdot [/mm] b = [mm] \|a\|\|b\|\cos \alpha$ [/mm]

Damit ist die gesuchte Ankathete

[mm] $\frac{a\cdot b}{\|a\|}$. [/mm]

und das in Richtung a, also mal [mm] $\frac{a}{\|a\|}$. [/mm]


ciao
Stefan

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Vektoren"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de