www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Uni-Analysis" - Formel
Formel < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Formel: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 13:02 So 10.04.2005
Autor: nitro1185

Hallo!!!

ich bin schon seit´einer weile daran bei 2 Kurven,die um die x-Achse Rotieren die Oberfläche auszurechnenen!!!

Gibt es eine Formel, womit man die Oberfläche berechnen kann,wenn man x(y) gegeben hat und die Kurve aber um die x-Achse rotiert.

Also gerade umgekehrt wie üblich :-)!!!

MFG daniel

        
Bezug
Formel: Antwort
Status: (Antwort) fertig Status 
Datum: 13:47 So 10.04.2005
Autor: Max


> Hallo!!!

Hallo Daniel,


> ich bin schon seit´einer weile daran bei 2 Kurven,die um
> die x-Achse Rotieren die Oberfläche auszurechnenen!!!
>  
> Gibt es eine Formel, womit man die Oberfläche berechnen
> kann,wenn man x(y) gegeben hat und die Kurve aber um die
> x-Achse rotiert.


Hast du jetzt die Funktion [mm] $x=f^{-1}(y)$ [/mm] gegeben und drehst um die $x$-Achse, oder hast du $y=f(x)$ gegeben und drehst um die $y$-Achse?

Da du meinst andersrum als üblich würde ich davon ausgehen, dass du eine normale Funktion $y=f(x)$ hast und diese statt um die $x$-Achse um die $y$-Achse drehen sollst. Normalerweise arbeitet man dann mit der Umkehrfunktion, weil man damit wieder die Formel bei Drehung um die $x$-Achse anwenden kann.

Bsp: Du sollst [mm] $y=f(x)=x^2$ [/mm] für [mm] $x\in[0;1]$ [/mm] um die $y$-Achse drehen. Statt dessen kannst du aber auch die Umkehrfunktion von $f$, also [mm] $f^{-1}(x)=\sqrt{x}$ [/mm] um die $x$-Achse drehen lassen für [mm] $x\in[f^{-1}(0); f^{-1}(1)]=[0; [/mm] 1]$. (Denn die Umkehrfunktion ist gespielgelt an der 1. Winkelhalbierenden.)

Jetzt kannst du das entsprechende Integral aufstellen und lösen - da die beiden Oberflächen gleich sind bist du fertig.

Max

Bezug
                
Bezug
Formel: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 15:23 So 10.04.2005
Autor: nitro1185

hallo Max!!ja so ähnlich meine ich das nur dass die Funktion komplizierter ist:-)!!!

Es handelt sich um die eine Kurve die dir schon bekannt ist!!

Also: [mm] 2x=y*\wurzel{y²-1} [/mm] Ich soll es um die x-Achse rotieren lassen

Wenn ich durch umständliches umformen y(x) berechne und umforme komme ich auf ein ganz blödes Integral mit doppelter Wurzel, winkeffunktionen .....

Also wirklich blöd zum berechnen,obwohl ich ganz und gar nicht rechenscheu bin :-)!!

So nun will ich eben x(y) um die x-Achse rotieren lassen!!!

x(y) = [mm] y/2*\wurzel{y²-1} [/mm]    ich glaube von a=2 bis b=5 um die x-Achse rotieren lassen:

Kann ich x(y) um die y Achse rotieren lassen anstatt y(x) um die x-Achse??

daraus würde folgen: O= 2*Pi*  [mm] \integral_{a}^{b} [/mm] {x(y)² dy}???

MFG daniel!!Danke für deine Tipps

Bezug
                        
Bezug
Formel: Antwort
Status: (Antwort) fertig Status 
Datum: 18:26 So 10.04.2005
Autor: Max

Hmm, da würde ich sagen, dass das gehen müsste, denn die einzelnen Ring, die die Oberfläche bilden, werden ja durch [mm] $2\pi \cdot [/mm] x(y)$ errechnet, wenn man jetzt all diese Ringe von [mm] $y_1=a$ [/mm] bis [mm] $y_2=b$ [/mm] haben will müsste das genau das Integral [mm] $2\pi\cdot \int_a^b [/mm] x(y) dy$ sein.

Max

Bezug
        
Bezug
Formel: Herleitung der Formel
Status: (Antwort) fertig Status 
Datum: 22:04 So 10.04.2005
Autor: MathePower

Hallo nitro1185,

ich kann Dir folgende Formel anbieten:

[mm]O_{x} \; = \;2\pi \;\int\limits_{y_{1} }^{y_{2} } {y\;\sqrt {1\; + \;\left( {\frac{{dx}} {{dy}}} \right)^{2} } \;dy} [/mm]

Diese leitet sich aus der Formel für die Oberfläche eines Rotationskörpers, der durch Drehung von y(x) um die x-Achse erzeugt wird her:

[mm]O_{x} \; = \;2\pi \;\int\limits_{x_{1} }^{x_{2} } {y\;\sqrt {1\; + \;\left( {\frac{{dy}} {{dx}}} \right)^{2} } \;dx} [/mm]

Wird hier [mm]\frac{{dy}} {{dx}}\; = \;\left( {\frac{{dx}} {{dy}}} \right)^{ - 1} [/mm] und [mm]dx\; = \;\left( {\frac{{dx}} {{dy}}} \right)\;dy[/mm] gesetzt, so ergibt sich obige Formel.

Gruß
MathePower


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de