| Formel 1: stochastisch unabh. < Stochastik < Hochschule < Mathe < Vorhilfe 
 
 
  |  |  
  | 
    
     |  | Status: | (Frage) überfällig   |   | Datum: | 13:11 So 22.06.2014 |   | Autor: | Herbart | 
 
 | Aufgabe |  | Zwei Tippgemeinschaften X und Y tippen bei der Formel 1 auf vier sich ausschließende Ergebnisse [mm] ($E_i$ [/mm] mit [mm] $i\in \{1,...,4\}$) [/mm] für acht Rennen. [mm] $E_1$: [/mm] "Richtiger Sieger" gibt 4 Punkte, [mm] $E_2$: [/mm] "Getippter Sieger ist noch unter den ersten 3" gibt 3 Punkte, [mm] $E_3$: [/mm] "Getippter Sieger ist noch unter den ersten 5" gibt 2 Punkte, [mm] $E_4$: [/mm] "falscher Tipp" gibt 0 Punkte. Tippgemeinschaft X tippt bei einem Rennen mit 0,2 [mm] $E_1$, [/mm] mit 0,3 [mm] $E_2$ [/mm] und mit 0,25 [mm] $E_3$. [/mm] Tippgemeinschaft Y mit 0,3 [mm] $E_1$, [/mm] 0,2 [mm] $E_2$ [/mm] und 0,15 [mm] $E_3$. [/mm] X sei Zufallsvariable von Tippgemeinschaft X und Y Zufallsvariable von Tippgemeinschaft Y. [mm] \\
 [/mm]
 Sind X und Y stochastisch unabhängig?
 | 
 Hallo zusammen,
 
 [mm] \\
 [/mm]
 ich versuche momentan obige Aufgabe zu lösen. Zunächst mein Ansatz:
 [mm] \\
 [/mm]
 [mm] $\Omega=\{0,2,3,4\}^8$ [/mm] mit [mm] $p(\omega)=\frac{1}{4^8}$. $X,Y:\Omega\to \mathbb{R}$ [/mm] mit [mm] $X(\omega_1,...,\omega_8)=\sum_{i=1}^8\omega_i$ [/mm] und [mm] $Y(\omega_1,...,\omega_8)=\sum_{i=1}^8\omega_i$. [/mm] Nun ist zu zeigen, dass [mm] $\forall x_1, x_2 \in \mathbb{R}: [/mm] P [mm] (X=x_1, Y=x_2)= P(X=x_1)\cdot P(Y=x_2)$. [/mm]
 [mm] \\
 [/mm]
 Bis hierhin ist alles klar. Jetzt habe ich aber keine Lust alle [mm] $4^8$ [/mm] Möglichkeiten mir zu überlegen und niederzuschreiben, auch wenn es "nur" 165 verschiedene Ergebnisse der Zufallsvariablen geben sollte. Hat jemand einen Tipp, wie man an dieser Stelle sinnvoll vorgeht?
 [mm] \\
 [/mm]
 [mm] \\
 [/mm]
 
 MfG
 [mm] \\
 [/mm]
 Herbart
 
 
 |  |  |  | 
 
  |  |  
  | 
    
     |  | Status: | (Mitteilung) Reaktion unnötig   |   | Datum: | 13:20 Do 26.06.2014 |   | Autor: | matux | 
 $MATUXTEXT(ueberfaellige_frage)
 
 |  |  | 
 
 
 |