www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Uni-Analysis" - Formel beweisen
Formel beweisen < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Formel beweisen: Tipp
Status: (Frage) beantwortet Status 
Datum: 08:38 Mi 08.11.2006
Autor: Planlos

Aufgabe
Sei g [mm] \in \IN, [/mm] g [mm] \ge [/mm] 2. Jedes n [mm] \in \IN_{0} [/mm] hat eine eindeutige Darstellung
   n = [mm] \summe_{v=0}^{r}a_{v}g^{v} [/mm]    mit [mm] a_{v} \in [/mm] {1,2,...,g-1}

Es steht zwar nicht in der Aufgabe, aber die Aussage soll bewiesen werden.
Kann mir einer sagen wie ich das am besten angehe?? Was die Formel meint ist mir ja klar. Aber weder die geeignete Beweismethode, noch die Anfänge des Beweises sind mir klar. Zur Zeit versuch ich es mit nem Widerspruchsbeweis, aber wird noch nix. Könnte das so klappen??
Danke für die Hilfe

        
Bezug
Formel beweisen: Antwort
Status: (Antwort) fertig Status 
Datum: 10:16 Mi 08.11.2006
Autor: ullim

Hi,

Du kannst es durch Division mit Rest beweisen.

[mm] n=a_1*g+r_1 [/mm] mit [mm] r_1\in\{0,1, .. , g-1\} [/mm] solte [mm] a_1\not=0 [/mm] mus man [mm] a_1 [/mm] weiter dividieren.

[mm] a_1=a_2*g+r_2 [/mm] also

[mm] n=a_2*g^2+r_2*g+r_1 [/mm] mit [mm] r_1,r_2\in\{0,1, .. , g-1\} [/mm] und auch hier wieder prüfen, ist [mm] a_2=0, [/mm]

wenn nein weiter teilen bis [mm] a_n=0 [/mm] gilt.

Es folgt

[mm] n=\summe_{v=0}^{r}r_{v}*g^{v} [/mm] mit [mm] r_v\in\{0,1, .. , g-1\} [/mm] für alle v

mfg ullim



Bezug
                
Bezug
Formel beweisen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 00:39 Do 09.11.2006
Autor: Planlos

Hi ullim. Ich finde es ja nett von dir, das du versucht hast mir weiterzuhelfen, aber ich verstehe den Anfang des Beweises nicht (Bestimmt ist er richtig aber warum??).
Du sagst ja im ersten Schritt: [mm] n=a_{1} [/mm] * g + [mm] r_{1} [/mm] mir [mm] r_{1} \in [/mm] {1,2,...,g-1}.
Dazu hab ich zwei Fragen:
1. Der Index in der Aufgabe fängt bei 0 an, du aber beginnst mit [mm] a_{1} [/mm] wieso?
und 2. Wie kann ich denn  auf die 9999 kommen, wenn g=10 ist??
Dann wäre mein [mm] a_{1} [/mm] = 9 und mein g [mm] 10^1. [/mm] Dann aber ist ja [mm] r_{1}>g-1. [/mm]

Bezug
                        
Bezug
Formel beweisen: Antwort
Status: (Antwort) fertig Status 
Datum: 01:24 Do 09.11.2006
Autor: leduart

Hallo planlös
> Hi ullim. Ich finde es ja nett von dir, das du versucht
> hast mir weiterzuhelfen, aber ich verstehe den Anfang des
> Beweises nicht (Bestimmt ist er richtig aber warum??).
> Du sagst ja im ersten Schritt: [mm]n=a_{1}[/mm] * g + [mm]r_{1}[/mm] mir
> [mm]r_{1} \in[/mm] {1,2,...,g-1}.
>  Dazu hab ich zwei Fragen:
>  1. Der Index in der Aufgabe fängt bei 0 an, du aber
> beginnst mit [mm]a_{1}[/mm] wieso?

Weil das wurscht ist! a1 ist doch nicht dein a1 sondern ne Hilfsgröße!

>  und 2. Wie kann ich denn  auf die 9999 kommen, wenn g=10
> ist??
>  Dann wäre mein [mm]a_{1}[/mm] = 9 und mein g [mm]10^1.[/mm] Dann aber ist ja
> [mm]r_{1}>g-1.[/mm]

Nein a1 wäre 999 und r1  9  r1 soll ja kleiner 10 sein!
[mm] 9999=9*10^0+9*10^1+.....+9*10^4 [/mm]
jede Zahl kannst du hoffentlich statt im Zehnersystem im 2-erSystem darstellen, dann ist g = 2
oder im 3er System oder eben im g-System. Wenn du überlegst, wie du das im 2-er oder im 3 er machtest, kannst dus hoffentlich im g-er
Gruss leduart

Bezug
                                
Bezug
Formel beweisen: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 20:45 Do 09.11.2006
Autor: Planlos

Jetzt hab ich es kapiert. Danke euch beiden.

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de