www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Lineare Algebra Sonstiges" - Formel vereinfachen
Formel vereinfachen < Sonstiges < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Formel vereinfachen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 12:28 Do 28.04.2011
Autor: Raingirl87

Hallo!
Ich habe irgendwie ein Problem beim vereinfachen folgender Formel:

[mm]F^{2}=\bruch{(ad+bc)^{2}}{4}*[1-(\bruch{a^{2}+d^{2}-\bruch{(ac+bd)(ab+cd)}{ad+bc}}{2ad})^{2}][/mm]    NB: [mm]\bruch{1}{2}(a+b+c+d)[/mm]=s

Durch Vereinfachen soll man auf F=[mm]\wurzel{(s-a)(s-b)(s-c)(s-d)}[/mm] kommen.

Um in der eckigen Klammer erstmal das Quadrat an dem Doppelbruch weg zu bekommen habe ich entsprechend x²-y²=(x-y)(x+y)[x=1, y=der Doppelbruch] umgeformt und gleich in  jeder Klammer den Hauptnenner gebildet:

[mm]F^{2} = \bruch{(ad+bc)^{2}}{4} * [(\bruch{2ad-a^{2}-d^{2}+ \bruch{(ac+bd)(ab+cd)}{ad+bc}}{2ad})*(\bruch{2ad+a^{2}+d^{2}- \bruch{(ac+bd)(ab+cd)}{ad+bc}}{2ad})][/mm]

Habe dann weiter umgeformt und bin auf
[mm]F^{2}=(ad)^{2}*(ad+bc)^{4}*[((2ad-a^{2}-d^{2})(ad+bc)+(ac+bd)(ab+cd))*((2ad+a^{2}+d^{2})*(ad+bc)-(ac+bd)(ab+cd))][/mm]
gekommen. Habe dann alles eeewig ausmultipliziert aber ich komme leider nicht auf der Ergebis. Hat vielleicht jemand eine Idee, wie man auf das Ergebnis kommen könnte oder sieht einen Fehler bei mir? Danke schonmal!
LG, Raingirl87


        
Bezug
Formel vereinfachen: Antwort
Status: (Antwort) fertig Status 
Datum: 13:20 Do 28.04.2011
Autor: Gonozal_IX

Huhu,

deine Idee ist schon nicht schlecht, nur konsequent weiter umformen:

$ [mm] F^{2} [/mm] = [mm] \bruch{(ad+bc)^{2}}{4} \cdot{} [(\bruch{2ad-a^{2}-d^{2}+ \bruch{(ac+bd)(ab+cd)}{ad+bc}}{2ad})\cdot{}(\bruch{2ad+a^{2}+d^{2}- \bruch{(ac+bd)(ab+cd)}{ad+bc}}{2ad})] [/mm] $

[mm] $=\left(\bruch{2ad(ad+bc) - a^2(ad+bc) - d^2(ad+bc) + (ac+bd)(ab+cd)}{4ad}\right)*\left(\bruch{2ad(ad+bc) + a^2(ad+bc) + d^2(ad+bc) - (ac+bd)(ab+cd)}{4ad}\right)$ [/mm]

$= [mm] \left(\bruch{2ad(ad+bc) - a^3d - a^2bc - ad^3 - bcd^2 + a^2bc + ac^2d + ab^2d + bcd^2}{4ad}\right) [/mm] * [mm] \ldots$ [/mm]

[mm] $=\left(\bruch{2ad(ad+bc) - a^3d - ad^3 + ac^2d + ab^2d}{4ad}\right) [/mm] * [mm] \ldots$ [/mm]

$= [mm] \left(\bruch{2(ad+bc) - a^2 - d^2 + c^2 + b^2}{2}\right) [/mm] * [mm] \ldots$ [/mm]

Das sieht doch schonmal besser aus :-)

Bezug
                
Bezug
Formel vereinfachen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 18:27 Do 28.04.2011
Autor: Raingirl87

Hallo!
Danke! Unter dem letzten Bruch muss aber eine 4 stehen, oder?
Ich habe das jetzt ausmultipliziert:
[mm] F^{2}=\bruch{(8abcd+2a^{2}b^{2}+2a^{2}d^{2}+2a^{2}c^{2}+2b^{2}c^{2}+2b^{2}d^{2}+2c^{2}d^{2}-a^4-b^4-c^4-d^4)}{16} [/mm]
Aber wie komme ich davon jetzt auf die Formel?
Ich müsste das ja jetzt irgendwie noch zu [mm]F^{2}=(\bruch{b+c+d-a}{2})(\bruch{a+c+d-b}{2})(\bruch{a+b+d-c}{2})(\bruch{a+b+c-d}{2})[/mm] umformen, hab aber leider keine Ahnung, wie ich das machen kann. :-(
LG, Raingirl87



Bezug
                        
Bezug
Formel vereinfachen: Antwort
Status: (Antwort) fertig Status 
Datum: 21:23 Do 28.04.2011
Autor: reverend

Hallo Raingirl,

das ist viel Schreibarbeit.
Multipliziere doch "einfach" die Zielformel aus und schau, ob das gleiche dabei herauskommt. Ich hab nur ein paar Stichproben gerechnet, aber die sehen alle gut aus.

Grüße
reverend


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de