www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Stochastik" - Formel von Bayes
Formel von Bayes < Stochastik < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Stochastik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Formel von Bayes: Frage
Status: (Frage) beantwortet Status 
Datum: 02:39 Sa 13.08.2005
Autor: svenchen

Hallo, es ist wohl möglich, gewisse Aufgaben auch ohne die Formel von Bayes zu lösen, diese quasi zu "umgehen". Seht euch dazu mal bitte an:

http://de.wikipedia.org/wiki/Formel_von_Bayes   (Krankheitsproblem)

oder auch hier im Forum:

https://matheraum.de/read?t=69023&v=t


Bei diesen Aufgaben wurde auf einen Ereignisbaum zurückgegriffen.

Wie kann ich  (ohne Formel von Bayes, mit Ereignisbaum) folgende Aufgabe lösen:

Holgar fährt an 50% der Arbeitstage mit dem Bus. Wenn er mit dem Bus fährt, kommt er zu 70% pünktlich. Durchschnittlich kommt er leider nur an 60% der Arbeitstage pünktlich. Mit welcher Wahtscheinlichkeit kommt er pünktlich zur Arbeit und hat den Bus benutzt?

Danke,

Sven

Habe in keinem anderen Forum diese Frage gestellt !!!

        
Bezug
Formel von Bayes: Antwort
Status: (Antwort) fertig Status 
Datum: 02:47 Sa 13.08.2005
Autor: Stefan

Hallo svenchen!

Naja, hier braucht man gar nichts, weder den Baum noch die Formel von Bayes. ;-)

Man kann das direkt mit der Formel für die bedingte Wahrscheinlichkeit ausrechnen.

Ist $B$ das Ereignis "er kommt mit dem Bus" und $P$ das Ereignis "er kommt pünktlich", dann gilt doch:

$P(B [mm] \cap [/mm] P) = P(P|B) [mm] \cdot [/mm] P(B) = 0.7 [mm] \cdot [/mm] 0.5 = 0.35$.

Liebe Grüße
Stefan

Bezug
                
Bezug
Formel von Bayes: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 02:52 Sa 13.08.2005
Autor: svenchen

hmm ich hab ein Lösungsbuch, da steht drin:

[mm] \bruch{0,5*0,7}{0,6} [/mm] = 58,33% weil er ja grade an 60% der Tage pünktlich kommt....



Bezug
                        
Bezug
Formel von Bayes: Antwort
Status: (Antwort) fertig Status 
Datum: 03:00 Sa 13.08.2005
Autor: Stefan

Hallo svenchen!

Aha, das ist ein sprachliches Problem. So, wie die Aufgabe gestellt ist, ist meine Lösung richtig. Gemeint war aber:

Gesetzt den Fall er kommt pünktlich zur Arbeit, mit welcher Wahrscheinlichkeit ist er dann mit dem Bus gefahren?

Das wäre dann in der Tat:

$P(B|P) = [mm] \frac{P(P|B) \cdot P(B)}{P(P)}$. [/mm]

Aber die Frage war ja: "Mit welcher Wahtscheinlichkeit kommt er pünktlich zur Arbeit und hat den Bus benutzt?"

Das ist ein klarer Fall für eine Durchschnittbildung...

Naja, egal, ich kenne diese Unsauberkeiten aus den Schulbüchern zu Genüge, leider. [notok] [motz]

Mit einem Baum ist das hier "schwierig", weil du dann erst $P(P|NB)$ (die Wahrscheinlichkeit pünktlich zu sein, wenn man nicht mit dem Bus fährt) berechnen musst, über: $0.5 [mm] \cdot [/mm] 0.7 + 0.5 [mm] \cdot [/mm] P(P|NB) = 0.6$, um den Baum komplett "malen" zu können, so wie du es vermutlich wolltest, aber das bringt hier echt gegenüber der Formel keinen Vorteil.

Liebe Grüße
Stefan

Bezug
                                
Bezug
Formel von Bayes: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 03:07 Sa 13.08.2005
Autor: svenchen

ja gut, dann danke für deine antwort . dann werd ich mir die formel wohl mal was genauer ansehen müssen, mein ziel war eigentlich über die herleitung hinwegzukommen ;)



Bezug
                                
Bezug
Formel von Bayes: Hinweis
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 03:10 Sa 13.08.2005
Autor: Stefan

Hallo svenchen!

Ich will dir aber doch noch einmal erklären, wie man mit dem Baumdiagramm $P(A|B)$ allgemein berechnen kann.

Du malst dir also ein Baumdiagramm, wo am ersten Ast zwei Zweige mit $A$ und $NA$ (="nicht $A$") weggehen, und dann jeweils noch einmal zwei Zweige mit $B$ und $NB$.

Jetzt rechnest du mit der Produkt- und Summenregel die Wahrscheinlichkeit aus zu $B$ zu kommen (es gibt dafür ja zwei Möglichkeiten: über $A$ und über $NA$). Diese Zahl schreibst du in den Nenner. Die Wahrscheinlichkeit über $A$ zu $B$ zu kommen (die du ja vorher schon mit der Produktregel ausgerechnet hattest) schreibst du in den Zähler.

Das war's schon. :-)

Liebe Grüße
Stefan

Bezug
                                        
Bezug
Formel von Bayes: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 03:59 So 14.08.2005
Autor: svenchen

Stefan, vielen Dank. Die Formel war heute mehr oder weniger meine Tagesbeschäftigung, denke, dass ich sie jetzt verstanden habe ;).

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Stochastik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de